Regional Estuary Monitoring Programme (REMP) Data Report: Benthic Macrofauna Communities and Sediments – July 2007 to April 2008

Southern Firth of Thames and Whaingaroa (Raglan) Harbour

Prepared by: Nathan Singleton

For: Environment Waikato PO Box 4010 HAMILTON EAST

May 2010

Document #: 1520788

Peer reviewed by: Hilke Giles	Date	7/05/2010	
Approved for release by: Peter Singleton	Date	17/05/2010	

Disclaimer

This technical report has been prepared for the use of Waikato Regional Council as a reference document and as such does not constitute council's policy.

Council requests that if excerpts or inferences are drawn from this document for further use by individuals or organisations, due care should be taken to ensure that the appropriate context has been preserved, and is accurately reflected and referenced in any subsequent spoken or written communication.

While Waikato Regional Council has exercised all reasonable skill and care in controlling the contents of this report, council accepts no liability in contract, tort or otherwise, for any loss, damage, injury or expense (whether direct, indirect or consequential) arising out of the provision of this information or its use by you or any other party.

Acknowledgements

The author would like to acknowledge the help of Vernon Pickett, Rebecca Ireland, Hannah Jones, Chris Service, Matthew Highway and Dan with sampling, and the help of Shari Gallop and Lisa Tomlinson with sorting of sediment samples. The report structure was developed by Stephanie Turner.

Page ii Doc #1520788

Table of contents

Α	cknowle	dgements	i
E	xecutive	summary	V
1		Introduction	1
2		Methods	2
	2.1	Field sites and sampling regime	2
		Sample collection and processing	4
	2.2.1 2.2.2	Benthic macrofauna Sediment characteristics	4 4
3		Results	4 5
•		Benthic macrofauna community structure	5
	3.1.1 3.1.2	Southern Firth of Thames	5 5
	3.2 3.2.1 3.2.2		8 8 12
		Sediment characteristics	17
	3.3.1	Surficial sediment grain-size	17
	3.3.2 3.3.3		17 17
	3.3.4		18
4		Discussion	21
R	eference	es	23
A	ppendix	1 - Southern Firth of Thames species/taxonomic group abundances	24
A	ppendix	2 - Whaingaroa Harbour species/taxonomic group abundances	38
A	ppendix	3 – Dry weight shell-hash	51
A	ppendix	4 – Sediment organic carbon and nitrogen content	55
A	ppendix	5 – Sediment photosynthetic pigment concentration	57
A	ppendix	6 – QA/QC procedures	59
I	ist	of figures	
	igure 1.	Location of permanent monitoring sites in the southern Firth of	
•	.ga. 0 11	Thames and Raglan.	3
Fi	igure 2:	Mean (± standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna	
		communities at the permanent monitoring sites in the southern Firth of Thames between July 2007 and April 2008. Sampling dates: Jul 07	
		= 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4.	7
Fi	igure 3:	Mean (± standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna	
		communities at the permanent monitoring sites in Whaingaroa Harbour between July 2007 and April 2008. Sampling dates: Jul 07 =	
		1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. WI was not sampled in Apr 08.	7
Fi	igure 4:	The mean (± standard error) number of selected taxa per core on each sampling date at each of the permanent monitoring sites in the	•
		southern Firth of Thames. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axes.	11
Fi	igure 5:	The mean (± standard error) number of selected taxa per core on each sampling date at each of the permanent monitoring sites in	11

Doc # 1520788 Page iii

Figure 6:	Whaingaroa Harbour. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axis. WI was not sampled in Apr 08. Mean (\pm standard error) a) median grain-size, b) proportion of mud (< 63 µm), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content = < 0.05) chlorophyll-a concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in the southern Firth of Thames between July 2007	14
	and April 2008. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3,	
Figure 7:	Apr $08 = 4$. Note the different scales on the vertical axis. Mean (\pm standard error) a) median grain-size, b) proportion of mud (< 63 µm), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content, f) chlorophyll-a concentration and g) phaeophytin concentration of the sediment at the permanent	19
	monitoring sites in Whaingaroa Harbour between July 2007 and April 2008. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axis. WI was not sampled in Apr 08.	20
	7.10	
List of	of tables	
Table 1:	Macrofauna indicator taxa monitored in the Regional Estuary Monitoring Programme.	2
Table 2:	Details of permanent monitoring sites and sampling regime in southern Firth of Thames and Whaingaroa Harbour.	3
Table 3:	The five most common (highest mean abundance) species/taxonomic groups on each sampling date for each permanent monitoring site in the southern Firth of Thames. 'Other bivalves', 'Other crustaceans' and 'Other amphipods' denote non-indicator species of these	
	taxonomic groups.	8
Table 4:	The five most common species/taxonomic groups on each sampling date for each permanent monitoring site in Whaingaroa Harbour. 'Other polychaetes', 'Other bivalves', 'Other crustaceans', 'Other	
	gastropods' and 'Other amphipods' denote non-indicator species of these taxonomic groups WI was not sampled in Apr 08.	13
Table 5:	Past and planned future 3- and 6-monthly sampling schedule at the	
Table 6:	five permanent monitoring sites in the southern Firth of Thames. Past and planned future 3- and 6-monthly sampling schedule at the	21
. 42.5 0.	five permanent monitoring sites in Whaingaroa Harbour.	21

21

Page iv Doc #1520788

Executive summary

In April 2001 Environment Waikato initiated the Regional Estuary Monitoring Programme (REMP) at five permanent monitoring sites in both the southern Firth of Thames and Whaingaroa (Raglan) Harbour. It is a long-term programme with the objective of monitoring the temporal changes in intertidal sediment characteristics and benthic macrofauna communities which may occur as a direct or indirect consequence of catchment activity and/or estuary development. It is envisaged that the Regional Estuary Monitoring Programme will provide relevant information useful in setting policy and assisting with the sustainable management of estuaries in the Waikato region. This report presents the monitoring results of sediment characteristics, and a suite of 26 'indicator' taxa and abundant non-indicator taxa of the intertidal benthic communities for the period July 2007 to April 2008.

This report documents the data from the seventh year of the monitoring programme. In addition to annual reports, detailed discussion and analysis of trends or patterns of change over time in the benthic macrofaunal communities and sediment characteristics are reported every five years in a separate trend report series for the Regional Estuary Monitoring Programme.

In the southern Firth of Thames five permanent sites were sampled in October 2007 and April 2008. In Whaingaroa Harbour five sites were sampled in October 2007 and, due to extreme weather conditions, only four in April 2008. Two sites from each harbour were additionally sampled in July 2007 and January 2008. Sampling the benthic macrofauna communities involved collecting 12 randomly located core samples from a permanent monitoring plot at each site. On each sampling occasion replicate bulked sediment samples were collected for grain-size analysis, total organic carbon and total nitrogen content. Surface scrapes were collected and analysed for chlorophyll-a and phaeophytin content.

Results from the July 2007 to April 2008 monitoring period indicate that there were only slight changes in assemblage composition in both the Firth of Thames and Whaingaroa Harbour. Overall bivalves were found to be more abundant in Whaingaroa Harbour than in the Firth of Thames, whereas polychaetes were more abundant in the Firth of Thames. Gastropods and crustaceans were also more abundant in Whaingaroa Harbour. The most consistently common taxa found at sites in the Firth of Thames included the polychaetes *Aonides oxycephala*, capitellids, *Magelona dakini*, *Aquilaspio aucklandica* and Scoloplos cylindrifer; and the bivalves *Nucula hartvigiana*, *Austrovenus stutchburyi* and *Paphies australis*. The exotic 'Asian date mussel', *Musculista senhousia*, occurred at most sites in Firth of Thames, being most common at the Gun Club site. In Whaingaroa Harbour, consistently common taxa included the polychaetes *Aquilaspio aucklandica*, *Cossura* sp. and capitellids; and the bivalves *Austrovenus stutchburyi*, *Nucula hartvigiana* and *Arthritica bifurca*.

Between July 2007 and April 2008 the median grain size remained consistent at all but one site in the Firth of Thames and all sites in Whaingaroa Harbour. At most sites in the Firth of Thames and Whaingaroa Harbour, peaks in mud content occurred in October 2007. Sites in Whaingaroa Harbour were generally 2-3 times muddier than those in the Firth of Thames. In Whaingaroa Harbour the highest amount of mud occurred at Haroto Bay, which remained consistent over the one year of sampling. The shell-hash content was also consistent over the sampling period in both estuaries.

Continued monitoring will identify any patterns of temporal change in sediment characteristics and the associated benthic communities. From these time-series data we will be able to distinguish changes which may occur as a direct or indirect consequence of catchment activity and/or estuary development from natural variability.

Page vi Doc #1520788

1 Introduction

Environment Waikato initiated the Regional Estuary Monitoring Programme in April 2001. The programme samples permanent monitoring sites in the southern Firth of Thames and Whaingaroa (Raglan) Harbour. Within the programme, sediment characteristics and benthic macrofauna communities are monitored as indicators of estuarine health at five fixed locations in each estuary. It is a long-term state of the environment programme with the objective of monitoring the temporal changes in intertidal sediments and benthic macrofauna communities which may occur as a direct or indirect consequence of catchment activity and/or estuary development. The programme provides information on the ecology of the intertidal benthic macrofauna communities in these estuaries and will ultimately provide information relevant for estuary management in the Waikato region. Details of the rationale and design of the programme are provided in Turner (2000 & 2001). The Regional Estuary Monitoring Programme is based on similar monitoring programmes designed by NIWA and undertaken by other regional councils (for example Auckland Regional Council).

A pilot study was carried out in April 2001, to establish a baseline for detecting changes over time in the benthic macrofauna communities and sediment characteristics (Turner et al., 2002). Since then permanent sites in both estuaries have been monitored at 3-or 6-monthly intervals to provide information on temporal (seasonal, annual and longer-term) and spatial patterns of variability in the intertidal benthic communities and sediment characteristics.

The results of the pilot study undertaken in April 2001 were presented in Turner et al. (2002), with subsequent results being published in three data reports to date (Turner & Carter, 2004; Felsing et al., 2006; Singleton & Pickett, 2006; Singleton, 2007). Results of the sediment sampling up to April 2003 were reported in Gibberd and Carter (2005). The first trend report (Felsing and Singleton, 2008) brought together data from the first five years of monitoring from April 2001 to April 2006. A laymans report (Nathan 2009) outlined the monitoring programme and summarised results from the trend report in a more public friendly manner. This report presents the results of the estuary monitoring from July 2007 to April 2008. A second time series analyses to determine any trends in the data will be carried out on 10 years of data in 2011.

The distribution and abundance of benthic macrofauna are related to physical and chemical sediment characteristics. For this reason sediment grain-size, organic matter content and photosynthetic pigment concentration were determined alongside macrofauna community data. The variables measured in the Regional Estuary Monitoring Programme are:

- 1 Twenty-six "indicator" taxa² characteristic of intertidal mud / sand-flat benthic macrofauna communities (Table 1), selected to represent a variety of taxonomic groups and a range of life-histories, ecological niches and feeding methods (see Hewitt et al., 2001). Non-indicator taxa are separated out to the lowest possible taxonomic level.
- 2 Sediment physical, chemical and biological characteristics:
 - Grain-size
 - Organic carbon and nitrogen
 - Chlorophyll-a and pheophytin concentration (to quantify benthic micro-algal biomass)
 - Rates of sediment deposition and erosion.

¹ Benthic macrofauna communities include the variety of organisms (e.g. shellfish, crabs, polychaetes [marine worms], crustaceans) that live in or on the bottom sediments. The "macrofauna" comprises those animals which are retained by a 500 µm mesh sieve.

² 'Taxa' is used here to indicate that some benthic macrofauna can not reliably be identified to species level and that therefore some of the 'taxa' or monitored may include more than one species.

Table 1: Macrofauna indicator taxa monitored in the Regional Estuary Monitoring Programme.

Phylum	Class	Order	Family	Genus	Species
Amphipods			-		-
Arthropoda	Crustacea	Amphipoda	Corophiidae	Paracorophium	sp.
Arthropoda	Crustacea	Amphipoda	Phoxocephalidae		
Bivalves					
Mollusca	Bivalvia	Veneroida	Lasaeidae	Arthritica	bifurca
Mollusca	Bivalvia	Veneroida	Veneridae	Austrovenus	stutchburyi
Mollusca	Bivalvia	Veneroida	Tellinidae	Macomona	liliana
Mollusca	Bivalvia	Nuculoida	Nuculidae	Nucula	hartvigiana
Mollusca	Bivalvia	Veneroida	Mesodesmatidae	Paphies	australis
Mollusca	Bivalvia	Veneroida	Semelidae	Theora	lubrica
Cumaceans					
Arthropoda	Crustacea	Cumacea	Diastylidae	Colurostylis	lemurum
Gastropods					
Mollusca	Gastropoda	Neogastropoda	Buccinulidae	Cominella	adspersa
Mollusca	Gastropoda	Docoglossa	Lottiidae	Notoacmea	sp.
Other					
Cnidaria	Anthozoa	Actiniaria	Actiniidae	Anthopleura	aureoradiata
Polychaetes					
Annelida	Polychaeta	Spionida	Spionidae	Aquilaspio	aucklandica
Annelida	Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus	sp.
Annelida	Polychaeta	Spionida	Spionidae	Aonides	oxycephala
Annelida	Polychaeta	Orbiniida	Paraonidae	Aricidea	sp.
Annelida	Polychaeta	Spionida	Spionidae	Pseudopolydora	complex
Annelida	Polychaeta	Orbiniida	Paraonidae	Cossura	sp.
Annelida	Polychaeta	Sabellida	Sabellidae	Euchone	sp.
Annelida	Polychaeta	Phyllodocida	Goniadidae	Goniada	sp.
Annelida	Polychaeta	Phyllodocida	Glyceridae	Glycera	sp.
Annelida	Polychaeta	Capitellida	"Capitellidae"	-	•
Annelida	Polychaeta	Spionida	Magelonidae	Magelona	dakini
Annelida	Polychaeta	Phyllodocida	Nereidae	Ŭ	
Annelida	Polychaeta	Orbiniida	Orbiniidae	Orbinia	papillosa
Annelida	Polychaeta	Orbiniida	Paraonidae		

2 Methods

Detailed methods of the Regional Estuary Monitoring Programme are outlined in Turner (2001), Turner et al. (2002) and Turner and Carter (2004).

2.1 Field sites and sampling regime

Five permanent sites in the southern Firth of Thames (Figure 1) and five sites in Whaingaroa (Raglan) Harbour (Figure 2) were sampled between two and four times in the period between July 2007 and April 2008. These sites are considered representative of the intertidal mud / sand-flats and are distributed throughout the main area of each estuary. In each estuary two sites were sampled in 3-monthly intervals and three sites in 6-monthly intervals (Table 2).

Page 2 Doc #1520788

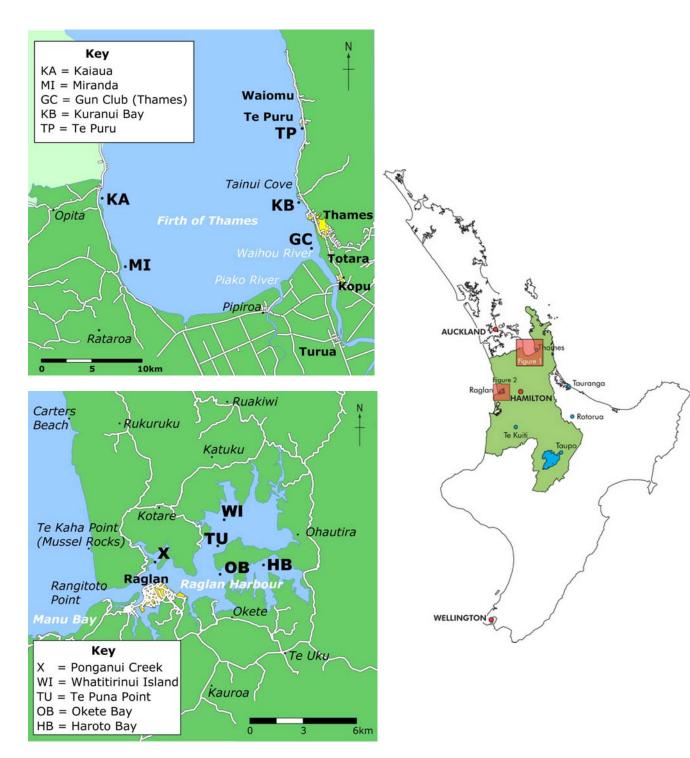


Figure 1. Location of permanent monitoring sites in the southern Firth of Thames and Whaingaroa (Raglan) Harbour.

Table 2: Details of permanent monitoring sites and sampling regime in southern Firth of Thames and Whaingaroa Harbour.

		Site Code	Sampling months
Firth of Thames	Kaiaua	KA	October 07, April 08
	Miranda	MI	July 07, October 07, January 08, April 08
	Thames (Gun Club)	GC	October 07, April 08
	Kuranui Bay	KB	July 07, October 07, January 08, April 08
	Te Puru	TP	October 07, April 08
Whaingaroa Harbour	Whatitirinui Island	WI	July 07, October 07, January 08, April 08
	Te Puna Point	TU	October 07, April 08
	Okete Bay	OB	July 07, October 07, January 08, April 08
	Haroto Bay	HB	October 07, April 08
	Ponganui Creek	X	October 07, April 08

2.2 Sample collection and processing

2.2.1 Benthic macrofauna

Permanent monitoring plots (approximately 100 m x 100 m) were randomly located at the mid-intertidal level at each site. Wooden posts mark the corners of each monitoring plot. On each sampling occasion 12³ core samples (13 cm diameter, 15 cm deep) were collected from within each monitoring plot. Each plot was divided into 12 equal-sized sectors and one core sample taken randomly (randomly derived Cartesian coordinates) from within each sector (see Thrush et al., 1988). To minimise sample interdependence (spatial autocorrelation) samples were not positioned within a 5 m radius of each other. To preclude any effects of localised modification of sampled populations from previous sampling occasions, samples were not taken within 5 m of previous sampling positions over any 6-month period.

Macrofauna were separated from the sediment by sieving (500 µm mesh), preserved in 70% isopropyl alcohol (in tap water) and stained with 0.1% Rose Bengal. In the laboratory, macrofauna were sorted and indicator species/taxa identified and counted. Indicator bivalve species were measured (shell width) and recorded into different size-classes: *Arthritica bifurca*: <2 mm, >2 mm; *Austrovenus stutchburyi* (cockle): <5 mm, >5 mm; *Macomona liliana* (wedge shell): <5 mm, 5–15 mm, >15 mm; *Nucula hartvigiana* (nut-shell): <2 mm, >2 mm; *Paphies australis* (pipi): <5 mm, 5–15 mm, >15 mm; *Theora lubrica*: <5 mm, >5 mm. The remaining species/taxa (i.e. non-indicator species/taxa) were identified to the lowest possible taxonomic level. Samples were stored in 50% isopropyl alcohol. Quality assurance and control procedures are outlined in Appendix 6.

From each site where sufficient numbers of shellfish were available, 20 to 30 adult-sized individuals of *Austrovenus stutchburyi*, *Macomona liliana*, and *Paphies australis* were selected, frozen and retained for condition analysis⁴. Condition analysis work has so far been done on samples from April 2003 to April 2006.

After sorting, the remaining non-living material (e.g. broken shells or 'shell-hash') was dried at 70°C for 48 hours and weighed to establish its dry weight.

2.2.2 Sediment characteristics

Five replicate (randomly placed) bulked surface (2 cm) sediment samples were collected from each monitoring plot on each sampling occasion for analysis of grain-size and total organic matter and stored frozen until analysis. In addition, five replicate surface sediment scrapes were collected from each monitoring plot on each sampling occasion for analysis of chlorophyll-a and phaeophytin content. These samples were stored in black containers and also frozen until analysis.

2.2.2.1 Surficial sediment grain-size

A sub-sample from each bulked sediment sample was analysed for grain size. Prior to analysis, samples were pre-treated with 10% hydrogen peroxide to remove organic material and 1M HCl to remove carbonate material. Calgon was added as a dispersant and samples were placed in an ultrasonic bath for 10 minutes to aid disaggregation. Samples taken in July 2007 were then analysed using a Galai laser sediment analyser, and for samples taken from October 2007 to April 2008 a Malvern Mastersizer 2000 sediment analyser was used. It should be noted the Galai's lower detection limit is 10 µm, whereas the Malvern can analyse sediment samples down to 0.01 µm.

2.2.2.2 Sediment organic carbon and nitrogen content

Another sub-sample from each bulked sediment sample was analysed for total organic carbon and total nitrogen content using an automated CHN analyser. Samples were

Page 4 Doc #1520788

-

³ See Hewitt *et al.* (2001) and Turner (2001) for justification.

⁴ Bivalves for condition analysis were removed during sieving and prior to sample preservation in isopropyl alcohol.

dried and finely ground before analysis. Sediment for total organic carbon analysis was pre-treated with acid to remove carbonate material prior to analysis.

2.2.2.3 Sediment photosynthetic pigment concentration

Chlorophyll-a was extracted from the sediment by boiling in 95% ethanol and the extract analysed using a spectrophotometer. Acidification was used to separate plant degradation products (phaeophytin) from chlorophyll-a.

3 Results

3.1 Benthic macrofauna community structure

3.1.1 Southern Firth of Thames

Figure 2 shows the mean total number of individuals and the major taxonomic group composition of the intertidal benthic macrofauna communities at each of the permanent monitoring sites in the Firth of Thames on each sampling date. At GC the mean total number of individuals was more than 2.5× higher compared to all other sites. At TP and KA bivalves were the most abundant taxonomic group, whereas polychaetes were the most abundant group on most sampling dates at GC, MI and KB.

Between July 2007 and April 2008, sites TP and KB showed the greatest changes in the total number of individuals and taxonomic composition. At TP the total abundance increased in from 50 individuals in October 2007 to 87 individuals in April 2008. Indicator bivalves were the most abundant taxonomic group on both sampling dates (48–81% of total abundance). The abundance of indicator polychaetes at TP in October 2007 was also relatively high (35% of individuals). The benthic community at KB was dominated by indicator polychaetes, which decreased from 72% of individuals in July 2007 to 49% and 47% in January 2008 and April 2008, respectively.

The community at MI was dominated by indicator polychaetes (40–60% of individuals) on all sampling dates but abundances fluctuated among the sampling events. The total number of individuals decreased from 95 individuals in July 2007 to 56 in January 2008 (followed by a small increase to 62 individuals in April 2008). Bivalves were also relatively abundant (32% of individuals) at MI in July 2007.

At sites GC and KA the total number of individuals and taxonomic composition was relatively consistent between sampling dates. At GC a small decrease in the total number of individuals occurred from October 2006 to April 2007. Indicator polychaetes (mainly *Aonides oxycephala*) were the most abundant group on both sampling dates (82–84% of individuals). Indicator bivalves dominated the benthic community composition at site KA (65–69%).

Abundances of gastropods (and crustaceans in general) in the Firth of Thames were very low. The full data set of Firth of Thames species and taxonomic group abundances is provided in Appendix 1.

3.1.2 Whaingaroa (Raglan) Harbour

Figure 3 shows the mean total number of individuals and the major taxonomic group composition of the intertidal benthic macrofauna communities at each of the permanent monitoring sites in Whaingaroa (Raglan) Harbour on each sampling date between July 2007 and April 2008.

From July 2007 to April 2008 the total number of individuals varied at HB, X and OB, whereas TU and WI showed little variation. Taxonomic composition was relatively consistent at all sites.

Indicator polychaetes clearly dominated numerically at sites OB (63–77% of individuals) and HB (53–57%), whereas indicator bivalves were more abundant at TU (55–63%), X (46–59%) and WI (45–49%). Indicator polychaetes were also relatively abundant at X in April 2008 (43%) and WI over all sampling dates (32–33%). There was a decrease in total abundance between October 2007 and April 2008 at sites HB (75 to 53 individuals) and X (160 to 118 individuals). This was mainly due to a decrease in abundance of indicator polychaetes and crustaceans at HB, and a decrease of indicator bivalves and crustaceans at site X.

The total abundance at OB slowly increased from 89 individuals in July 2007 to 94 and 106 in October 2007 and January 2008, respectively, followed by a large decrease in April 2008 to 62 individuals. This was mainly caused by a decrease in abundance of indicator polychaetes and crustaceans.

Gastropods were relatively abundant at sites TU (8–15%) and WI (7–9%) and crustaceans at sites X (9–13%), WI (4–7%) and OB (10–21%). The full data set of Whaingaroa (Raglan) Harbour species and taxonomic group abundances is provided in Appendix 2.

Page 6 Doc #1520788

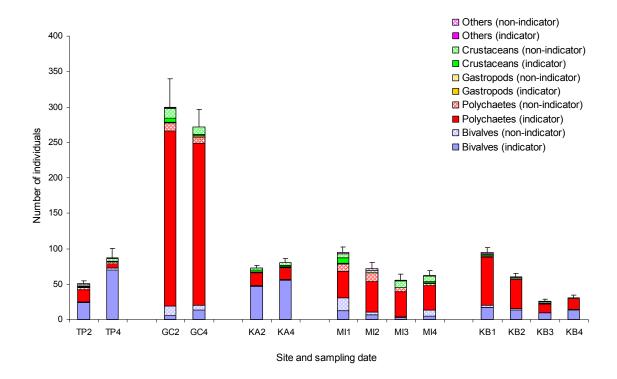


Figure 2: Mean (± standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna communities at the permanent monitoring sites in the southern Firth of Thames between July 2007 and April 2008. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4.

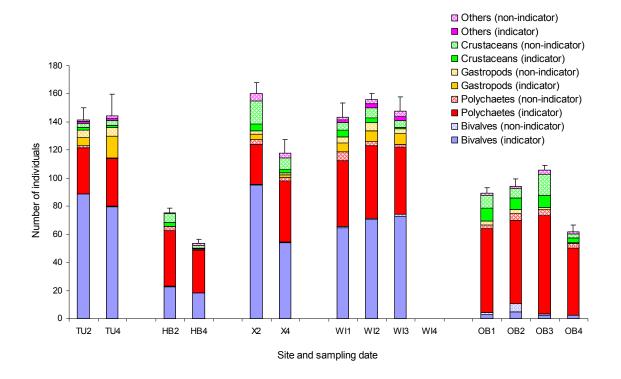


Figure 3: Mean (± standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna communities at the permanent monitoring sites in Whaingaroa Harbour between July 2007 and April 2008. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. WI was not sampled in Apr 08.

3.2 Changes in the abundance of individual species and taxonomic groups

3.2.1 Southern Firth of Thames

The five most common species/taxonomic groups (indicator and non-indicator) at each of the permanent monitoring sites in the southern Firth of Thames on each sampling date between July 2007 and April 2008 are listed in Table 3.

From July 2007 to April 2008 only a few changes were observed in the mean abundance of the most common taxonomic groups at all sampling sites. At TP the bivalve species *Paphies australis* (0-21 individuals core⁻¹) and *Nucula hartvigiana* (4-118 individuals core⁻¹) were the two most abundant species in October 2007 and April 2008. There was a change in the third to fifth most common species found at TP between the sampling dates.

At GC, the polychaete *Aonides oxycephala* was the most abundant taxa on both sampling dates (80-489 individuals core⁻¹). Other bivalves (including the Asian date mussel, *Musculista senhousia*), other amphipods and *Scoloplos cylindrifer* (a non-indicator polychaete) were consistently within the 5 most common taxa on both sampling dates.

N. hartvigiana (29-75 individuals core⁻¹) and capitellid polychaetes (1-36 individuals core⁻¹) were the two most common taxa at KA on both sampling dates. The polychaete *Magelona dakini* was also common in October 2007 and April 2008 (0-6 individuals. core⁻¹).

Table 3: The five most common (highest mean abundance) species/taxonomic groups on each sampling date for each permanent monitoring site in the southern Firth of Thames. 'Other bivalves', 'Other crustaceans' and 'Other amphipods' denote non-indicator species of these taxonomic groups.

	TP	GC	KA	MI	КВ
				Other bivalves	"Capitellidae"
_				Aonides	Austrovenus
Jul-07				Scoloplos	Arthritica
ゔ				Aquilaspio	Magelona
				Colurostylis	Other bivalves
	Paphies	Aonides	Nucula	Aonides	"Capitellidae"
7	Nucula	Other bivalves	"Capitellidae"	Scoloplos	Austrovenus
Oct 07	"Capitellidae"	"Capitellidae"	Phoxocephalidae	Orbinia	Arthritica
Ō	Pseudopolydora	Scoloplos	Magelona	Aquilaspio	Magelona
	Aonides	Other amphipods	Nereidae	"Capitellidae"	Nereidae
				Aonides	"Capitellidae"
8				Other crustaceans	Austrovenus
Jan-08				Aquilaspio	Arthritica
Ja				Scoloplos	Other crustaceans
				"Capitellidae"	Glycera sp.
	Nucula	Aonides	Nucula	Aonides	"Capitellidae"
8	Paphies	Scoloplos	"Capitellidae"	Aquilaspio	Arthritica
Apr-08	Austrovenus	Other amphipods	Arthritica	Other bivalves	Austrovenus
Ĭ	Other amphipods	Other bivalves	Magelona	Other crustaceans	Other bivalves
	Other bivalves	Arthritica	Austrovenus	Scoloplos	Magelona

Page 8 Doc #1520788

At MI the polychaete *A. oxycephala* was the most abundant taxa (4-38 individuals core¹) on all sampling dates, except July 2007 where non-indicator bivalves were dominant (5-37 individuals core⁻¹). Indicator polychaetes, capitellids and *Aquilaspio aucklandica* and two non-indicator taxa (S. cylindrifer and crustaceans) were also common.

At KB, the capitellid polychaete was the most abundant taxa on all sampling dates (0-83 individuals core⁻¹). The bivalves Austrovenus stutchburyi (2-20 individuals core⁻¹) and Arthritica bifurca (0-26 individuals core⁻¹) were also consistently common on all sampling dates at KB.

Mean abundances of selected (most abundant) indicator and non-indicator species/taxa at each of the sites on each sampling date are shown in Figure 4.

The bivalve, Arthritica bifurca was most abundant at MI in July 2007, followed by a sharp decline in abundance over subsequent sampling dates (Figure 4a). The abundance of A. bifurca was relatively high at KB over the first two sampling dates, followed by a decrease in abundance in January 2008 and a subsequent strong increase in April 2008. A substantial increase in numbers was also seen in April 2008 at GC. The patterns in abundance of A. bifurca are mainly due to changes in abundance of individuals less than 2 mm long.

The abundance of *Austrovenus stutchburyi* showed a gradual decline from July 2007 to April 2008 at KB, was relatively consistent at MI, and showed an increase at GC, TP and KA (slight increase; Figure 4b). This was mainly a reflection of changes in abundance of individuals <5 mm.

Macomona liliana abundance was highest in July 2007 at MI and KB, with numbers decreasing over subsequent sampling dates (Figure 4c). There was a slight increase in abundance of *M. liliana* in April 2008 at sites GC and TP. The patterns in abundance of *M. liliana* can be mainly attributed to changes in abundance of individuals <5 mm.

The abundance of *Nucula hartvigiana* was consistently high at KA with a slight increase in April 2008. At TP there was a very strong increase in numbers from a mean abundance of 11 individuals in October 2007 to 58 individuals in April 2008 (Figure 4d). This was mainly due to an increase in numbers in the <2 mm size class.

Paphies australis was only found in relatively high abundances at TP, with a strong decrease in numbers occurring between Jul 2007 and April 2008. Consistently low numbers were found at GC (Figure 4e). Individuals found at TP were mainly in the >20 mm size class, whereas a mix of <5 mm and 5–15 mm size classes were found at GC.

The highest abundance of the cumacean *Colurostylis lemurum* occurred at MI in July 2007; however, a sharp decline followed in October 2007, with numbers slightly increasing again in April 2008 (Figure 4f). At GC there was a strong decrease in numbers over the one year of monitoring. The abundance at KA, KB and TP was low.

The abundance of most polychaetes species varied over the year of monitoring reported here. The most abundant polychaete was *Aonides oxycephala* (Figure 4h). This species was clearly most abundant at GC, where numbers were consistent between October 2007 and April 2008. MI had consistently lower numbers. Capitellid polychaetes were also found in high numbers, with the highest abundance occurring at KB (Figure 4k). A steady decline in abundance occurred between July 2007 and January 2008, with numbers remaining consistently low in April 2008. Capitellid numbers also decreased slightly over the sampling period at GC, TP and MI, and remained relatively consistent at KA. Another spionid polychaete species, *Aquilaspio aucklandica*, was found in lower numbers (Figure 4g). *A. aucklandica* was most abundant at MI, where numbers initially decreased in October 2007, followed by a gradual increase over subsequent sampling periods. The abundance at all other sites was consistently low (with a slightly higher abundance at KB).

The polydorid polychaetes ("pseudopolydora complex") were most abundant at TP, with a strong decrease in numbers occurring between October 2007 and April 2008 (Figure 4i). The polychaete *Glycera* sp. was most abundant at KB, with numbers peaking in October 2007, followed by a decline over the last two sampling periods (Figure 4j). *Magelona dakini* abundance declined in October 2007 and January 2008, with numbers remaining consistent in April 2008. The abundance increased at KA, TP and MI over the sampling year, with a decline in April 2008 occurring at MI (Figure 4I). The abundance of nereid polychaetes decreased overall at all sites over the one year of sampling (Figure 4m). *Orbinia papillosa* was most abundant at MI with numbers peaking in October 2007, followed by a strong decline over subsequent sampling periods (Figure 4n). The non-indicator polychaete *Scoloplos cylindrifer* was most abundant at MI and GC. Over the sampling periods numbers decreased slightly at GC, with a stronger decrease occurring at MI (Figure 4o).

Note that indicator amphipods were only found in extremely low abundances so are not presented graphically in this report.

Page 10 Doc #1520788

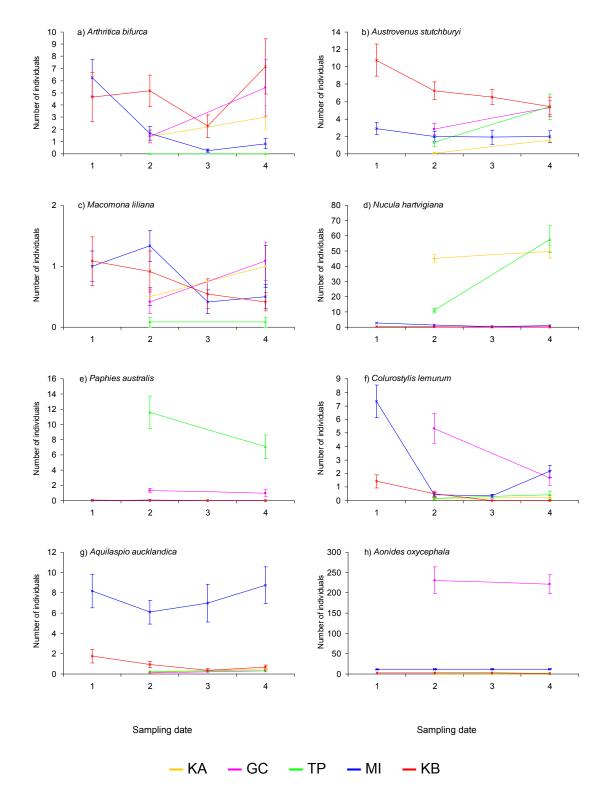


Figure 4: The mean (± standard error) number of individuals per core at each monitoring site on each sampling date for selected taxa in the southern Firth of Thames. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axes.

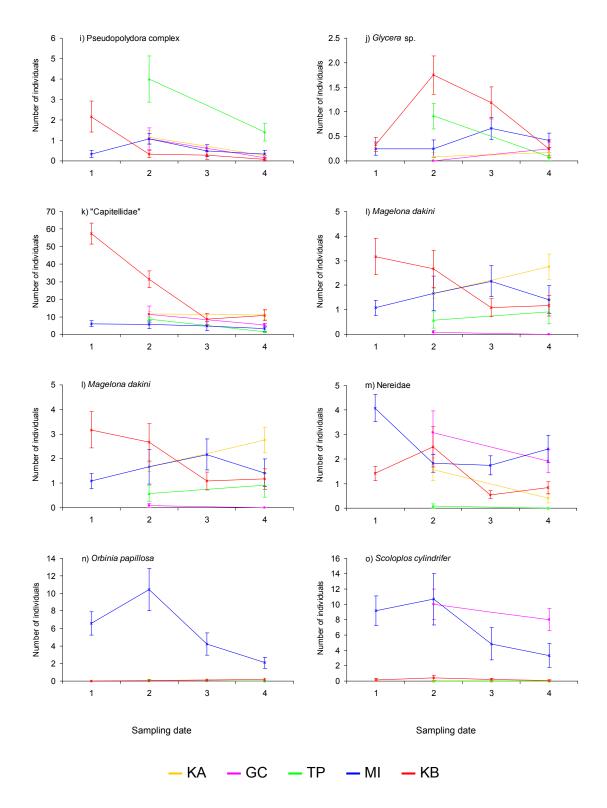


Figure 4. (cont.)

3.2.2 Whaingaroa (Raglan) Harbour

The five most common species/taxonomic groups (indicator and non-indicator) at each of the permanent monitoring sites in Whaingaroa (Raglan) Harbour on each sampling date between July 2007 and April 2008 are listed in Table 4.

At sites TU, X, HB and OB the most abundant taxa remained unchanged over all sampling dates. At TU the bivalve species *Austrovenus stutchburyi* (11–74 individuals core⁻¹) and *Nucula hartvigiana* (8-69 individuals core⁻¹) were the most common taxa on both sampling dates. The polychaetes, *Aquilaspio aucklandica* (1–36 individuals core⁻¹) and capitellids (1–20 individuals core⁻¹) were also among the most common species; however, in lower numbers. At HB, capitellid polychaetes were the most abundant taxa

Page 12 Doc #1520788

on both sampling dates (6–29 individuals core⁻¹). The second most abundant taxa changed from the bivalve *Arthritica bifurca* in October 2007 (1–28 individuals core⁻¹) to another bivalve, *A. stutchburyi*, in April 2008 (0–15 individuals core⁻¹). Nereid polychaetes were also abundant on both sampling dates at HB. At X, *A. stutchburyi* (15–80 individuals core⁻¹) was the most abundant taxa on both sampling dates. The bivalve *N. hartvigiana* and polychaetes *A. aucklandica* and capitellids were frequent on both sampling dates.

At OB the most abundant taxa on all four sampling dates was capitellids (12–48 individuals core⁻¹). The second most abundant taxa on three of the four sampling dates were Cossura polychaetes (3–24 individuals core⁻¹). *A. aucklandica* were second in January 2008, and common on two other sampling dates. Other abundant taxa found on three sampling dates included the amphipod taxa *phoxocephalidae* (1–20 individuals core⁻¹), and nereid polychaetes (1–11 individuals core⁻¹). At WI the most abundant taxa changed slightly over the sampling dates. *N. hartvigiana* was most abundant in July and October 2007 (5–59 individuals core⁻¹) and *A. stutchburyi* in January 2008 (21–53 individuals core⁻¹). Capitellid polychaetes were consistently the second most abundant taxa (12–46 individuals core⁻¹) on all sampling dates. *A. aucklandica* (1–33 individuals core⁻¹) and the bivalve *Macomona liliana* (3–15 individuals core⁻¹) were also common taxa at WI.

The mean abundances of selected taxa at each of the sites on each sampling date are shown in Figure 5.

Table 4: The five most common species/taxonomic groups on each sampling date for each permanent monitoring site in Whaingaroa Harbour. 'Other polychaetes', 'Other bivalves', 'Other crustaceans', 'Other gastropods' and 'Other amphipods' denote non-indicator species of these taxonomic groups. . WI was not sampled in Apr 08.

	TU	НВ	X	WI	ОВ
				Nucula	"Capitellidae"
_				"Capitellidae"	Cossura sp.
Jul-07				Austrovenus	Phoxocephalidae
ラ				Aquilaspio	Nereidae
				Macomona	Aquilaspio
	Austrovenus	"Capitellidae"	Austrovenus	Nucula	"Capitellidae"
<u> </u>	Nucula	Arthritica	Nucula	"Capitellidae"	Cossura sp.
Oct-07	Aonides	Nereidae	Aquilaspio	Aquilaspio	Phoxocephalidae
0	"Capitellidae"	Austrovenus	"Capitellidae	Austrovenus	Other bivalves
	Aquilaspio	Other amphipods	Other crustaceans	Macomona	Nereidae
				Austrovenus	"Capitellidae"
8				"Capitellidae"	Aquilaspio
Jan-08				Nucula	Other amphipods
L _O				Aquilaspio	Cossura sp.
				Notoacmea sp.	Phoxocephalidae
	Austrovenus	"Capitellidae"	Austrovenus		"Capitellidae"
8	Nucula	Austrovenus	Aquilaspio		Cossura sp.
Apr-08	Notoacmea sp.	Arthritica	Nucula		Aquilaspio
Ā	Aquilaspio	Nereidae	"Capitellidae"		Nereidae
	"Capitellidae"	Aquilaspio	Macomona		Other polychaetes

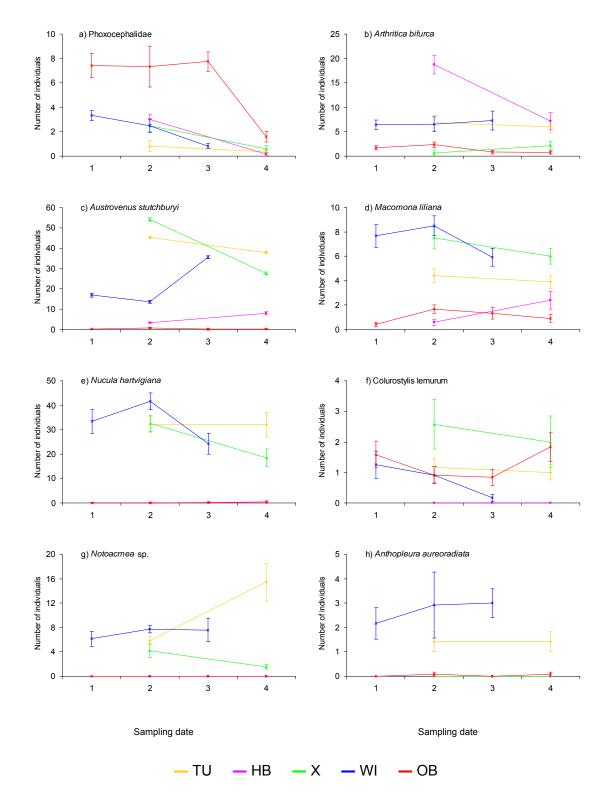


Figure 5: The mean (± standard error) number of individuals per core at each monitoring site on each sampling date for selected taxa in Whaingaroa (Raglan) Harbour. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axis. WI was not sampled in Apr 08 due to adverse weather conditions.

Page 14 Doc #1520788

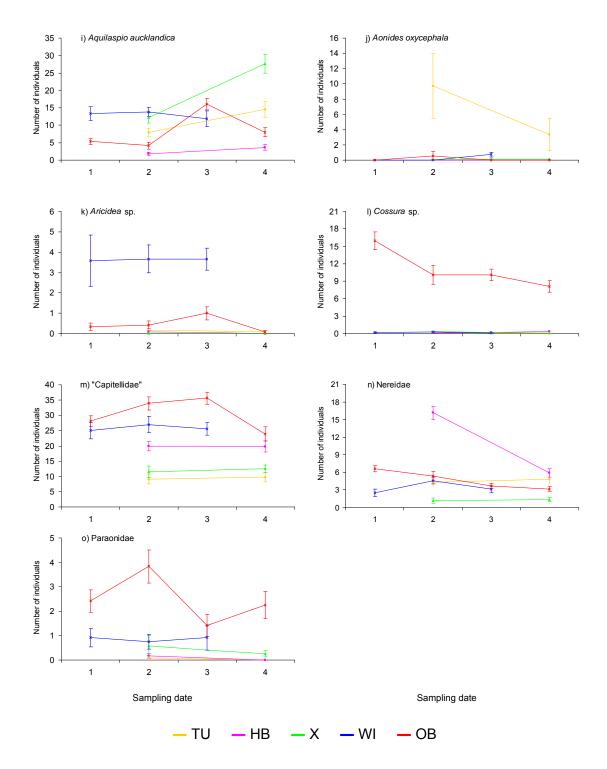


Figure 5. (cont.)

The highest abundance of phoxocephalid amphipods occurred at OB, where numbers were very consistent over the first three sampling periods, followed by a sharp decline in April 2008 (Figure 5a). A decline in numbers was also seen at the other four sampling sites.

Abundance of indicator bivalves varied both temporally and spatially. *Arthritica bifurca* was present in highest numbers at HB which showed a sharp decline in April 2008. The medium level of abundance at WI and TU, and low numbers at OB and X, remained relatively consistent over the sampling period (Figure 5b). Similar to the Firth of Thames, the majority of *A. bifurca* recorded from Raglan Harbour were <2 mm. High numbers of *Austrovenus stutchburyi* were found at TU and X in October 2007, with a decline in abundance at both sites in April 2008. In contrast a sharp increase in abundance occurred at WI in April 2008, with a smaller increase at HB (Figure 5c).

These patterns can be mainly attributed to a change in abundance of individuals <5 mm.

The abundance of *Macomona liliana* at site X and TU decreased slightly between October 2007 and April 2008 (Figure 5d), compared to a greater decrease in numbers at WI over the one year of sampling (which was a reflection of a decrease in abundance of individuals <5 mm). There was a small increase in abundance at OB between October 2007 and January 2008. The changes in numbers of *M. liliana* can mainly be attributed to changes in abundance of individuals <5 mm. High numbers of *Nucula hartvigiana* occurred at TU, WI and X (Figure 5e). The abundance at WI peaked in January 2007, with a subsequent decline in April 2008. A strong decline in numbers also occurred at X in April 2008, whereas the abundance at TU remained very consistent over the sampling dates. The pattern at X and WI (between July and October 2007) was mainly caused by changes in numbers of both size classes, <2 mm and >2 mm, whereas between October 2007 and January 2008 at WI it was mainly the >2 mm size class.

Colurostylis lemurum (cumacean) numbers were highest at X in October 2007, followed by a small decrease in numbers in April 2008. Numbers also decreased at WI, whereas a slight increase occurred at OB in April 2008 (Figure 5f). There was a sharp increase at TU and a more gradual increase at WI in the abundance of the limpet Notoacmea sp. over the sampling period. There was a decline in abundance at site X (Figure 5g). The abundance of the anemone Anthopleura aureoradiata over the one year of sampling increased slightly at WI and was very consistent at TU (Figure 5h).

The abundance of polychaetes also varied over time and between sites. The abundance of *Aquilaspio aucklandica* increased strongly at X and TU, with a small increase in numbers occurring at HB (Figure 5i). At OB there was sharp peak in abundance of *A. aucklandica* in January 2008, followed by a strong decline the following sampling period. Numbers at WI were relatively consistent. *Aonides oxycephala* had the highest number of individuals at TU, with a sharp drop in abundance occurring in April 2008 (Figure 5j). The polychaete *Aricidea* sp. was most abundant at WI, where numbers were very consistent between July 2007 and January 2008. This species was present at low levels at OB, where numbers were relatively consistent apart from a slight increase in January 2008 (Figure 5k).

Cossura sp. were either absent or found in very low abundance at all sites, except for OB where the average numbers of individuals were relatively high (16) in July 2007 followed by a gradual decrease to 8 individuals in April 2008 (Figure 5I).

Capitellid polychaetes occurred in relatively high numbers at all sites, in particular WI and OB (Figure 5m). At WI and OB numbers were overall consistent between sampling dates, with a slight peak occurring at OB in January 2008, followed by a decline in April 2008. The abundance at all other sites was very consistent over the one year of sampling. The abundance of nereid polychaetes decreased substantially at HB and steadily at OB between July 2007 and April 2008 (Figure 5n), while all other sites maintained relatively consistent abundances of nereids. Paraonid numbers at OB peaked in October 2007, followed by a decline in January 2008 and a subsequent smaller peak in abundance in April 2008. Consistently low levels were found at all other sites (Figure 5o).

Page 16 Doc #1520788

3.3 Sediment characteristics

3.3.1 Surficial sediment grain-size

3.3.1.1 Southern Firth of Thames

Over the sampling period the median grain size was lowest (136–215 μ m) and remained relatively consistent at sites MI and KA and KB (Figure 6a). At site TP the median grain size was slightly higher (262-274 μ m) but unchanged. At GC there was a large increase from an average of 224 μ m in October 2007 to 325 μ m in April 2008.

The proportion of mud was variable at sites MI, KB and GC (Figure 6b). There was a marked increase in the average proportion of mud at KB in October 2007, followed by a strong decline in January 2008. In contrast a sharp decline occurred at GC, from an average of 26.8% in October 2007 (which is abnormally high for GC when compared to previous monitoring results) to 8.7% in April 2008. The proportion of mud in the sediment was relatively consistent at KA and TP.

3.3.1.2 Whaingaroa (Raglan) Harbour

The median grain size remained relatively consistent at WI, HB and OB except for a small decrease at OB in October 2007 (Figure 7a). At X and TU there was a small increase in grain size between October 2007 and April 2008. The median grain size at all sites ranged from 47 to 157 μ m.

The proportion of mud varied considerably among sites. The highest proportion of mud occurred at HB (56.3–59.1%) and OB (18.3–40.4%; Figure 7b). At both OB and WI there was an increase in mud content from 18% and 15% to 40% and 24%, respectively, between July 2007 and October 2007. At TU and X the proportion of mud decreased over the study period from 15% and 25% to 10% and 12%, respectively.

3.3.2 Shell hash

3.3.2.1 Southern Firth of Thames

The greatest amount of mean dry weight of shell-hash per core was found at site GC, where shell-hash content decreased from 738 g core⁻¹ in October 2007 to 681 g core⁻¹ in April 2008 (Figure 6c). Samples from all other sites contained substantially lower and relatively constant amounts of shell hash (MI: 376–441 g core⁻¹, TP: 95–130 g core⁻¹ and KA: 66–87 g core⁻¹. Detailed results are provided in Appendix 3.

3.3.2.2 Whaingaroa (Raglan) Harbour

In Whaingaroa Harbour the greatest amount of shell-hash was found at X and HB and the lowest at OB (Figure 7c). At X there was a decrease in shell-hash from 216 g core⁻¹ in October 2007 to 194 g core⁻¹ in April 2008. In contrast there was an increase in shell material at HB (from 158 g core⁻¹ in October 2007 to 193 g core⁻¹ in April 2008) and TU (from 93 g core⁻¹ in October 2007 to 123 g core⁻¹ in April 2008). The amount of shell-hash at WI and OB was relatively consistent over the study period. Detailed results are provided in Appendix 3.

3.3.3 Sediment organic carbon and nitrogen content

3.3.3.1 Southern Firth of Thames

Mean total organic carbon at the southern Firth of Thames sites was consistent and relatively stable (0.2–0.5%) except for a peak of 0.93% at site KB in October 2007 (Figure 6d). At site KA, total organic carbon decreased from 0.47% in October 2007 to 0.26% in April 2008 but the October measurement was very variable.

Trends in the mean total nitrogen content generally followed those in total organic carbon and values ranged from below detection limit to 0.15% (Figure 6e). Detailed results are provided in Appendix 4.

3.3.3.2 Whaingaroa (Raglan) Harbour

The mean levels of total organic carbon declined over the study period at OB (1.12% in July 2007 to 0.60% in April 2008), WI (0.71% in July 2007 to 0.49% in January 2008) and HB (0.74% in October 2007 to 0.57% in April 2008; Figure 7d). Consistent levels were observed at TU and X.

Mean total nitrogen mirrored the trends of total organic carbon with values ranging from 0.06 to 0.15% (Figure 7e). Detailed results are provided in Appendix 4.

3.3.4 Sediment photosynthetic pigment concentration

3.3.4.1 Southern Firth of Thames

Mean chlorophyll-a levels followed a similar trend as total organic carbon (Figure 6f). Values peaked at KB in October 2007 (24.96 μg g⁻¹) and declined sharply in January 2008 (11.88 μg g⁻¹) followed by a smaller decline in April 2008 (10.28 μg g⁻¹). Levels also decreased in April 2008 at KA and TP, whereas they increased at GC and were relatively consistent over the study period at MI.

Similar to chlorophyll-a levels, phaeophytin levels peaked in October 2007 at KB (16.74 $\mu g \ g^{-1}$), declined sharply in January 2008 (4.03 $\mu g \ g^{-1}$) and increased again in April 2008 (7.20 $\mu g \ g^{-1}$; Figure 6g). Low phaeophytin levels were observed at MI (0.3–3.22 $\mu g \ g^{-1}$), GC (1.7–3.56 $\mu g \ g^{-1}$), KA (3.50–3.72 $\mu g \ g^{-1}$) and TP (2.02–2.03 $\mu g \ g^{-1}$). Detailed results are provided in Appendix 5.

3.3.4.2 Whaingaroa (Raglan) Harbour

Contrary to the southern Firth of Thames sites, trends in mean chlorophyll-a content at the Whaingaroa Harbour sites differed from those observed for total organic carbon (Figure 7f). The decrease in chlorophyll-a between October 2007 and April 2008 was in general consistent with total organic carbon trends. However, values at sites TU and X were generally higher (17.94–21.0 μg g⁻¹) than those at sites HB and OB (7.68–20.20 μg g⁻¹), the exact opposite trend to total organic carbon. Furthermore, chlorophyll-a increased sharply at WI (from 7.98 μg g⁻¹ in July 2007 to 21.20 μg g⁻¹ in October 2007) and OB (from 7.98 μg g⁻¹ in July 2007 to 21.20 μg g⁻¹ in October 2007) while, at the same time, organic carbon strongly decreased.

Phaeophytin levels in Raglan Harbour over the study period declined at all sites except WI (Figure 7g). At WI there was a decline from 5.12 μg g⁻¹ in July 2007 to 2.40 μg g⁻¹ in October 2007, followed by an increase to 6.28 5.12 μg g⁻¹ in January 2007. Detailed results are provided in Appendix 5.

Page 18 Doc #1520788

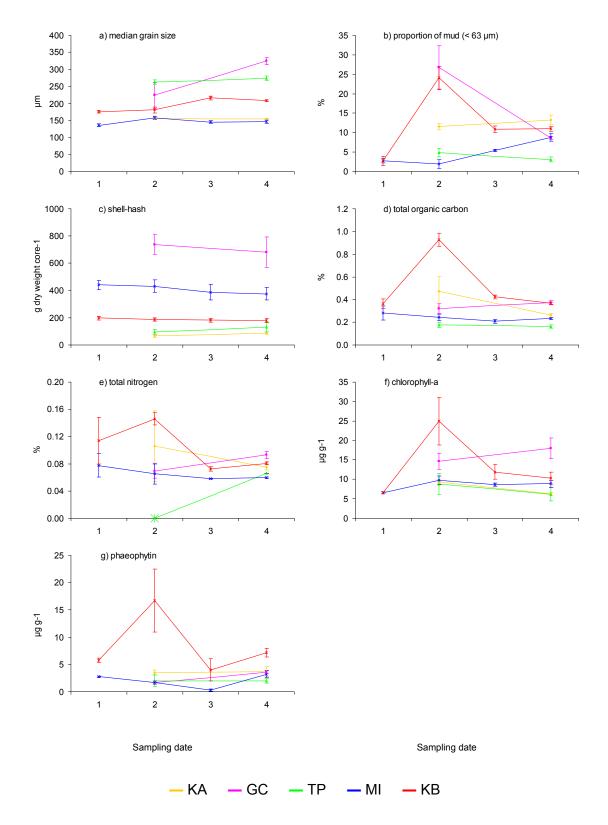


Figure 6: Mean (\pm standard error) a) median grain-size, b) proportion of mud (< 63 µm), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content \pm = < 0.05) chlorophyll-a concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in the southern Firth of Thames between July 2007 and April 2008. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axis.

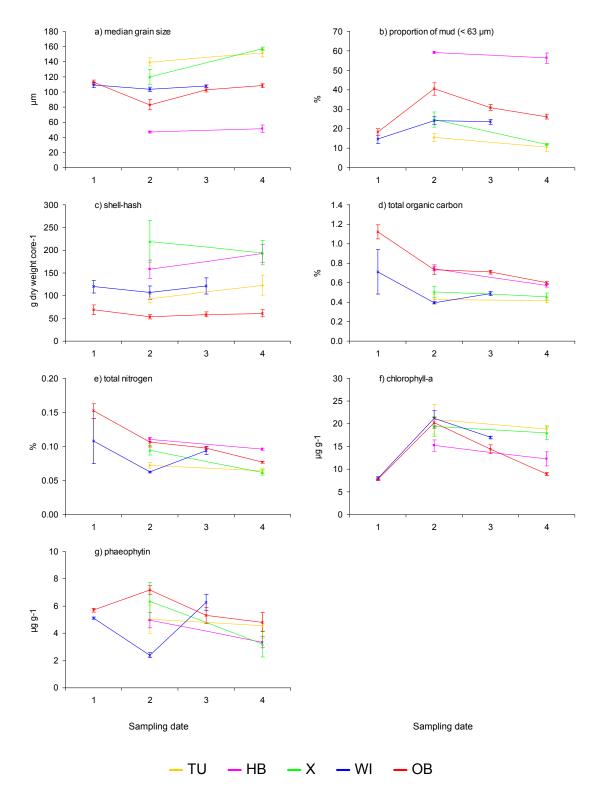


Figure 7: Mean (± standard error) a) median grain-size, b) proportion of mud (< 63 μm), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content, f) chlorophyll-a concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in Whaingaroa Harbour between July 2007 and April 2008. Sampling dates: Jul 07 = 1, Oct 07 = 2, Jan 08 = 3, Apr 08 = 4. Note the different scales on the vertical axis. WI was not sampled in Apr 08.

Page 20 Doc #1520788

4 Discussion

This report documents the results of the Regional Estuary Monitoring Programme from July 2007 to April 2008. Detailed discussion and analysis of trends or patterns of change over time in the benthic macrofaunal communities and sediment characteristics are reported on every five years in a separate trend report series for the monitoring programme. The next trend report will be prepared after completion of the July 2010 to April 2011 monitoring period. At present we are building up a picture of short-term changes (their nature, size and frequency) that affect macrofaunal communities in the southern Firth of Thames and Whaingaroa Harbour. In the future, information on these changes will enable long-term trends to be identified. It is in such trends that any impacts of long-term changes in the estuaries or their catchments are likely to become apparent. The first trend report (Felsing and Singleton, 2008), which analysed data from April 2001 to April 2006, showed a trend of increasing fine sediment over just 5 years in both estuaries. Although the muddiest sites in Raglan Harbour had the lowest abundance and diversity of macrobenthic invertebrates there was no clear declining trends of mud sensitive taxa observed. If the current trend in fine sediment continues it may reach critical threshold levels where the benthic community could be adversely impacted.

After a review of the Regional Estuary Monitoring Programme was undertaken in 2008/2009 (to assess whether any changes should be implemented in terms of frequency of sampling or the number of sites sampled) it was decided that monitoring continues in both estuaries at 6-monthly intervals at all sites and that monitoring at one site in Raglan Harbour, Te Puna Point (TU), be discontinued. Outlines of the sampling schedule for past and future monitoring in both estuaries are presented in Tables 4 and 5.

Table 5: Past and planned future 3- and 6-monthly sampling schedule at the five permanent monitoring sites in the southern Firth of Thames.

	KA	MI	GC	KB	TP
2001	Apr/Oct	Apr/July/Oct	Apr/Oct	Apr/July/Oct	Apr/Oct
2002	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2003	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2004	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2005	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2006	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2007	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2008	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2009	Apr/Oct	Apr/Oct	Apr/Oct	Apr/Oct	Apr/Oct

Table 6: Past and planned future 3- and 6-monthly sampling schedule at the five permanent monitoring sites in Whaingaroa Harbour.

	НВ	WI	TU	ОВ	Х
2001	Apr/Oct	Apr/July/Oct	Apr/Oct	Apr/July/Oct	Oct
2002	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2003	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2004	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2005	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2006	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2007	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2008	Apr/Oct	Jan/July/Oct	Apr/Oct	Jan/Apr/July/Oct	Apr/Oct
2009	Apr/Oct	Apr/Oct	Sampling discontinued	Apr/Oct	Apr/Oct

The Regional Estuary Monitoring Programme was designed to monitor a suite of 26 selected benthic macrofauna species and taxa as indicators of environmental change. However, over time some non-indicator species were found to occur in high numbers. For example, the non-indicator gastropod species *Cominella glandiformis* is more common in Firth of Thames samples than the indicator gastropod *Cominella adspersa*. A non-indicator polychaete *Scoloplos cylindrifer* is also abundant in the Firth of Thames (at MI and GC). Conversely, some indicator species are either absent at some of the monitoring sites, or found in very low numbers. Therefore it was recommended that all macroinvertebrate fauna be identified to the lowest taxonomic level possible (indicator and non-indicator) to provide a comprehensive description of the macrofaunal communities (which is also useful in identifying potential incursions of introduced species such as *Musculista senhousia*, the asian mussel). This approach has been in place since July 2007. The selection of indicator species may be reconsidered in the next trend report to include our experience over ten years of monitoring.

Continued monitoring will identify any patterns of temporal change in sediment characteristics and the associated benthic communities. From these time-series data we will be able to distinguish changes which may occur as a direct or indirect consequence of catchment activity and/or estuary development from natural variability.

Page 22 Doc #1520788

References

- Felsing M, Singleton N, Gibberd B 2006. Regional Estuary Monitoring Programme (REMP) data report: benthic macrofauna communities and sediments July 2002 to April 2004. Southern Firth of Thames and Whaingaroa (Raglan) Harbour. Environment Waikato Technical Report 2006/27. Hamilton, Waikato Regional Council (Environment Waikato)
- Felsing M, Singleton N 2008. Regional Estuary Monitoring Programme: April 2001 to April 2006. Southern Firth of Thames and Whaingaroa (Raglan) Harbour. Environment Waikato Technical Report 2008/48. Hamilton, Waikato Regional Council (Environment Waikato)
- Gibberd B, Carter N 2005. Regional Estuary Monitoring Programme: sediment monitoring April 2001 to April 2003. Environment Waikato Technical Report 2005/27. Hamilton, Waikato Regional Council (Environment Waikato)
- Hewitt JE, Funnell GA, Cummings VJ, Hatton S 2001. Guide to macrobenthic invertebrate taxa monitored by Environment Waikato. NIWA Client Report EVW01225/2. Hamilton, National Institute of Water and Atmospheric Research
- Singleton N, Pickett V 2006. Regional Estuary Monitoring Programme (REMP) data report: benthic macrofauna communities and sediments July 2004 to April 2005, Southern Firth of Thames and Whaingaroa (Raglan) Harbour. Environment Waikato Technical Report 2006/44. Hamilton, Waikato Regional Council (Environment Waikato)
- Singleton N 2007. Regional Estuary Monitoring Programme (REMP) data report: benthic macrofauna communities and sediments July 2006 to April 2007, Southern Firth of Thames and Whaingaroa (Raglan) Harbour. Environment Waikato Technical Report 2008/51. Hamilton, Waikato Regional Council (Environment Waikato)
- Singleton N 2009. Regional Estuary Monitoring Programme. Hamilton, Waikato Regional Council (Environment Waikato)
- Thrush SF, Pridmore RD, Hewitt JE, Roper DS 1988. Design of an ecological monitoring programme for the Manukau Harbour. Water Quality Consultancy Report No. 7099. Auckland, Auckland Regional Water Board
- Turner S 2000. Proposed coastal ecological monitoring programme for Environment Waikato. Environment Waikato Internal Series 2000/08. Hamilton, Waikato Regional Council (Environment Waikato)
- Turner S 2001. Monitoring the region's estuaries : intertidal sand-flat benthic communities. Environment Waikato Internal Series 2000/11. Hamilton, Waikato Regional Council (Environment Waikato)
- Turner S, Gibberd B, Crozier J 2002. Regional Estuary Monitoring Programme pilot study. Environment Waikato Internal Series 2002/02. Hamilton, Waikato Regional Council (Environment Waikato)
- Turner S, Carter N 2004. Regional Estuary Monitoring Programme: benthic macrofauna communities April 2001 to April 2002. Southern Firth of Thames and Whaingaroa (Raglan) Harbour. Environment Waikato Technical Report 2004/08. Hamilton, Waikato Regional Council (Environment Waikato)

Appendix 1 - Southern Firth of Thames species/taxonomic group abundances

KA October 2007

				CORI		ORE	IUMBE	R								
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOD	AMPHIPODS		_		_									0		
ACOR APHOX	Corophiidae Phoxocephalidae		0	0 2	0	0 2	0	0 6	0 7	0	0 1	0 3	0 17	0	0 40	0.0 3.3
ALTIOX	BIVALVES	SIZE	-				Ů	Ü	<u> </u>	U		J	17		70	5.5
BAB<2	Arthritica bifurca	<2	3	0	1	0	0	1	1	1	0	1	7	1	16	1.3
BAB>2		>2	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
		Total	3	0	1	0	0	1	1	1	1	1	7	1	17	1.4
BAS<5	Austrovenus stutchburyi	<5	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BAS>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DML 45	Manager Illiana	Total	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BML<5 BML5-15	Macamona liliana	<5 5-15	0	0	0	1 0	0	1 0	0	0	0	0	0 1	0	2 1	0.2 0.1
BML>15		>15	0	0	0	0	0	0	1	0	1	1	0	0	3	0.1
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DIVIE COND		Total	0	0	0	1	0	1	1	0	1	1	1	0	6	0.5
BNH<2	Nucula hartvigiana	<2	1	0	0	2	0	0	0	1	0	0	0	0	4	0.3
BNH>2	Ü	>2	33	49	52	56	43	49	43	53	50	38	39	33	538	44.8
		Total	34	49	52	58	43	49	43	54	50	38	39	33	542	45.2
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
D.T	- , ,,,	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	1	0	0	0	0	1	0	2	0.2
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS	Total	0	0	0	0	0	1	0	0	0	0	1	0	2	0.2
CCL	Colurostylis lemurum		0	0	0	0	1	0	1	0	0	0	0	0	2	0.2
COL	GASTROPODS		Ů	Ů	Ů	Ů		Ť		Ť	Ť	Ŭ	Ŭ	J	_	0.2
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		0	1	0	0	0	1	0	0	0	0	0	0	2	0.2
PAGL	Aglaophamus sp.		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
PAO	Aonides oxycephala		2	0	0	0	0	0	0	0	0	0	0	0	2	0.2
PAR	Aricidea sp.		1	1	0	0	0	0	0	0	0	0	0	0	2	0.2
PBOC PCOS	Pseudopolydora complex		3 0	1 0	3	2	0	0	0	0	2 0	1 0	1 0	1 0	14 0	1.2 0.0
PEUC	Cossura sp. Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		4	0	0	0	0	2	0	0	1	3	0	1	11	0.9
PGLY	Glycera sp.		0	0	0	0	ő	0	0	0	0	0	0	1	1	0.1
PHF	"Capitellidae"		20	13	14	2	7	13	6	8	14	17	20	5	139	11.6
PMD	Magelona dakini		2	2	1	2	2	1	1	1	3	1	2	2	20	1.7
PNIC	Nereidae		1	0	2	2	0	1	2	0	2	0	5	4	19	1.6
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
	NON INDICATOR SPECIES															
CAMPH	Amphipods		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
CCRAB	Crabs		1	2	0	0	0	1	1	0	0	1	1	1	8	0.7
CCUM CISO	Cumaceans		0	0	0	0	0	0	0	0	0	0	0 1	0	0 2	0.0
COST	Isopods Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.2 0.0
CSHR	Shrimps/Mysids		0	0	1	0	0	0	1	3	3	0	1	0	9	0.0
COTH	Other Crustaceans		0	1	0	1	0	1	0	0	0	3	1	4	11	0.8
вотн	Bivalves		1	0	1	1	0	0	0	1	0	2	1	1	8	0.7
GOTH	Gastropods		0	0	0	0	1	0	1	0	0	0	1	2	5	0.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
POTH	Polychaetes		1	1	2	0	0	1	2	0	0	1	1	0	9	8.0
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT																
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			0 1 75	0 0 74	0 0 78	0 0 71	0 0 56	0 0 79	0 0 67	0 0 68	0 0 78	0 0 72	0 0 101	0 0 58	0 1 877	0.0 0.1 73.1

Page 24 Doc #1520788

KA April 2008

							С	ORE N	UMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Corophiidae Phoxocephalidae		0	1	0	1	0	1	1	2	3	4	4	1	18	1.5
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	0	0	4	0	4	1	6	3	11	3	1	2	35	2.9
BAB>2		>2	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
DAO - 5	A colored to take and	Total	0	0	4	0	4	1	6	3	12	3	1	2	36	3.0
BAS<5 BAS>5	Austrovenus stutchburyi	<5 >5	0	1	0	0	2	1	1	1 0	3	3	2	2 0	16 1	1.3 0.1
BAS-COND		Cond.analysis	0	0	1	0	0	0	0	0	0	1	0	0	2	0.1
DATO COND		Total	0	1	1	1	2	1	1	1	3	4	2	2	19	1.6
BML<5	Macomona liliana	<5	2	0	1	0	1	1	0	0	0	0	0	3	8	0.7
BML5-15		5-15	0	0	1	0	0	0	0	0	1	0	0	0	2	0.2
BML>15		>15	1	0	0	0	1	0	0	0	0	0	0	0	2	0.2
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH<2	Alexander to and declares	Total	3 14	3	2 14	13	2 13	7	0 22	0 36	1	21	0	3	12	1.0
BNH>2	Nucula hartvigiana	<2 >2	15	29	28	35	25	31	41	25	30 29	30	26 34	35 40	234 362	19.5 30.2
DINI I/Z		Total	29	32	42	48	38	38	63	61	59	51	60	75	596	49.7
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DT		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
	CUMACEANS	Total	U	U	U	0	_	U	U	U	U	U	U	0	U	0.0
CCL	Colurostylis lemurum		1	0	1	0	0	0	0	0	0	1	0	0	3	0.3
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAA	POLYCHAETES Aquilaspio aucklandica		0	0	2	0	0	0	0	0	0	2	1	1	-	0.5
PAGL	Aglaophamus sp.		0	1	0	0	2	0	0	0	0	1	2	2	6 8	0.5
PAO	Aonides oxycephala		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
PAR	Aricidea sp.		0	0	0	1	0	2	0	0	0	0	0	0	3	0.3
PBOC	Pseudopolydora complex		1	0	0	0	0	0	0	0	1	0	0	1	3	0.3
PCOS	Cossura sp.		0	0	0	0	0	0	1	0	0	0	0	1	2	0.2
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	1	0	0	0	0	0	1	0	0	0	2	0.2
PHF PMD	"Capitellidae" Magelona dakini		6 1	8 4	12 6	3	14 4	12 3	1	36 2	18 2	4 5	14 0	5 3	133 33	11.1 2.8
PNIC	Nereidae		0	0	0	0	1	0	2	1	0	0	0	1	5	0.4
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	NON INDICATOR SPECIES															
CAMPH	Amphipods		3	0	0	0	0	5	1	6	0	0	0	0	15	1.3
CCRAB	Crabs		0	0	1	0	0	0	0	0	0	0	1	0	2	0.2
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO COST	Isopods		0	1	0	0	0	0	0	0	1	0	0	0	2 0	0.2 0.0
CSHR	Ostracods Shrimps/Mysids		0	0	0	1	7	0	0	0	1	3	1	1	0 14	1.2
COTH	Other Crustaceans		0	2	6	1	1	0	1	0	2	0	0	0	13	1.1
вотн	Bivalves		1	0	1	2	2	2	2	0	1	4	3	1	19	1.6
GOTH	Gastropods		0	1	1	0	0	0	1	3	0	0	2	0	8	0.7
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
LUOI	i chactor zoalarialac			0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0		-											
ONEM	Holuthurians Nemerteans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM POTH	Holuthurians Nemerteans Polychaetes		0	0	0	2	1	1	1	0	0	0	2	0	10	0.8
ONEM POTH OOLIG	Holuthurians Nemerteans Polychaetes Oligochaetes		0 1 0	0 1 0	0 1 0	2 0	1	1 0	1	0 0	0	0	2 0	0 0	10 0	0.8 0.0
ONEM POTH OOLIG OFLAT	Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		0 1 0 0	0 1 0 1	0 1 0 0	2 0 0	1 0 0	1 0 0	1 0 0	0 0 0	0 0 0	0 0 3	2 0 0	0 0 0	10 0 4	0.8 0.0 0.3
ONEM POTH OOLIG	Holuthurians Nemerteans Polychaetes Oligochaetes		0 1 0	0 1 0	0 1 0	2 0	1	1 0	1	0 0	0	0	2 0	0 0	10 0	0.8 0.0

GC October 2007

							С	ORE	UMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS		0	1	0	0	1	0	0	0	0	0	0	0	2	0.2
APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.2
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	1	3	0	0	0	4	1	1	1	5	1	0	17	1.4
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	3	0	0	0	4	1	1	1	5	1	0	17	1.4
BAS<5	Austrovenus stutchburyi	<5	1	1	1	2	1	5	6	2	2	1	0	8	30	2.5
BAS>5 BAS-COND		>5	0	1 0	1 0	0	1 0	0	0	0	1 0	0	0	0	4 0	0.3
BAS-COND		Cond.analysis Total	1	2	2	2	2	5	6	2	3	1	0	8	34	0.0 2.8
BML<5	Macomona liliana	<5	0	0	0	0	1	1	0	1	0	0	1	0	4	0.3
BML5-15	macomona mana	5-15	0	0	0	0	0	0	ő	1	0	0	0	0	1	0.1
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	1	1	0	2	0	0	1	0	5	0.4
BNH<2	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH>2		>2	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
		Total	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
BPA<5	Paphies australis	<5 5.45	0	2	0	0	0	2	1	0	1	1	1	3	11	0.9
BPA5-15		5-15	1	0	2	0	1	0	0	0	1	0	0	0	5	0.4
BPA>15 BPA-COND		>15 Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA-COND		Total	1	2	2	0	1	2	1	0	2	1	1	3	16	1.3
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5	THOOR RADHOU	>5	0	0	0	0	0	0	0	0	ō	0	o	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		8	3	1	3	5	13	7	2	3	11	6	2	64	5.3
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		2	1	1	3	1	0	0	0	0	0	0	1	9	0.8
	OTHER		_		_	_	_		_						_	
OAN	Anthopleura aureoradiata		0	0	0	0	0	1	0	1	0	0	0	3	5	0.4
PAA	POLYCHAETES Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		120	135	273	202	189	131	212	489	303	340	80	295	2769	230.8
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		1	0	0	0	1	0	0	3	0	2	0	6	13	1.1
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PHF	"Capitellidae"		11	15	11	0	6	4	7	61	7	3	4	8	137	11.4
PMD	Magelona dakini		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PNIC POP	Nereidae		1 0	3 0	2	1 0	1 0	2 0	7 0	11 0	2 0	2	1 0	4 0	37 0	3.1
PPAR	Orbinia papillosa Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
1171	NON INDICATOR SPECIES		J	,	J	J	J	Ů	Ľ	Ů	Ļ	Ů	Ļ	Ů	,	0.0
CAMPH	Amphipods		6	5	7	10	12	1	3	3	2	3	0	2	54	4.5
CCRAB	Crabs		0	0	0	0	0	1	1	1	2	1	0	0	6	0.5
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		1	0	0	0	0	0	1	0	0	1	0	3	6	0.5
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	1	0	0	0	1	0	0	0	2	0.2
COTH	Other Crustaceans		19	0	0	47	1	12	1	1	5	0	0	12	98	8.2
BOTH	Bivalves		8	10	3	4	11	9	3	25	7	7	3	72	162	13.5
GOTH	Gastropods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
EHOL ONEM	Holuthurians Nemerteans		0	0	0	0	0	0	0	1	2	0	0	2	0 5	0.0
POTH	Polychaetes		14	8	3	9	10	8	16	26	10	24	9	2	5 139	0.4 11.6
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	-		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Fialworms													. ~		
OFLAT OEDW	Flatworms Edwardsia		0	1	1	1	0	0	1	0	0	0	0	1	5	0.4
				1	1 0	1 0	0	0	1 0	0	0 0	0 4	0 1	1	5 8	0.4 0.7

GC April 2008

							С	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOD	AMPHIPODS			_				_	_		_					0.0
ACOR APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
	BIVALVES	SIZE									,	-				
BAB<2	Arthritica bifurca	<2	2	0	0	2	25	12	4	13	0	1	2	2	63	5.3
BAB>2		>2	0	0	0	0	1	1	0	0	0	0	0	0	2	0.2
BAS<5	Austrovenus stutchburyi	Total <5	10	3	3	2	26 8	13 7	4	13 2	0 4	2	2	2	65 53	5.4 4.4
BAS>5	Austrovenus statonburyr	> 5	0	1	0	0	0	2	4	1	0	1	2	0	11	0.9
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	10	4	3	4	8	9	8	3	4	3	6	2	64	5.3
BML<5	Macomona liliana	<5	2	0	0	1	0	3	2	1	1	1	1	0	12	1.0
BML5-15		5-15	1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		Cond.analysis Total	0 3	0	0	0	0	0	0	0 1	0	0	0	0	0 13	0.0 1.1
BNH<2	Nucula hartvigiana	<2	0	0	1	0	0	0	0	0	0	0	3	0	4	0.3
BNH>2	rtabala riartrigiaria	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	1	0	0	0	0	0	0	0	3	0	4	0.3
BPA<5	Paphies australis	<5	0	2	3	0	1	0	0	0	1	0	1	0	8	0.7
BPA5-15		5-15	0	2	1	0	0	0	0	0	0	1	0	0	4	0.3
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis Total	0	0 4	0 4	0	0	0	0	0	0	0	0	0	0 12	0.0 1.0
BTHL<5	Theora lubrica	10tai <5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5	Theora labilita	>5	0	0	0	0	0	0	0	ő	0	0	0	0	o	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		1	1	6	3	4	3	1	0	1	0	0	0	20	1.7
004	GASTROPODS		0	_			0	_	_		_	_	_			
GCA GNHE	Cominella adspera Notoacmea sp.		0	0	0	0	0	0	0	0	0	0 5	9	0 1	0 16	0.0 1.3
GIVITL	OTHER		U	0	_	0	U	0	0	Ů	0		9	'	10	1.5
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		0	0	1	0	1	2	0	0	0	0	0	0	4	0.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Arioidos on		117	218	315	264	249	151	210	286	62	249	209	324	2654	221.2
PAR PBOC	Aricidea sp. Pseudopolydora complex		0	0	0	0	0	0	0	0	0	0	0	0	0 2	0.0 0.2
PCOS	Cossura sp.		0	0	0	0	0	0	0	ő	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	1	0	0	0	0	0	1	0	0	1	0	3	0.3
PHF	"Capitellidae"		2	3	10	4	2	12	6	5	2	5	11	2	64	5.3
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC POP	Nereidae Orbinia papillosa		2	1	1 0	2	2	4 0	1	4 0	0	1 0	5 0	0	23 0	1.9 0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	NON INDICATOR SPECIES															
CAMPH	Amphipods		0	0	0	0	0	0	0	0	1	2	0	1	4	0.3
CCRAB	Crabs		0	0	0	0	0	3	0	0	0	0	1	1	5	0.4
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO COST	Isopods		0	0	1	2	0	2	4 0	2 0	2	6	9	3 0	31	2.6
CSHR	Ostracods Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
COTH	Other Crustaceans		0	0	0	0	0	1	0	1	0	4	53	27	86	7.2
вотн	Bivalves		17	12	3	3	6	6	13	9	4	4	4	1	82	6.8
GOTH	Gastropods		0	0	2	0	0	0	0	1	0	3	0	1	7	0.6
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		1	0	0	1	0	0	0	0	0	0	0	0	2	0.2
POTH OOLIG	Polychaetes Oligochaetes		12 0	12 0	15 0	7 0	5 0	16 0	8	6 0	0	3 0	14 0	3 0	101 0	8.4 0.0
OFLAT	Oligochaetes Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	1	0	0	0	0	0	0	0	0	1	2	0.2
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	TOTAL		167	256	364	294	304	226	257	332	78	288	329	369	3264	272.0

TP October 2007

							(ORE	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS<5	Austrovenus stutchburyi	<5	0	1	1	2	1	0	0	0	0	0	0	0	5	0.4
BAS>5		>5	0	2	4	0	2	1	0	0	1	0	0	0	10	8.0
BAS-COND		Cond.analysis	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
51.0		Total	0	3	5	2	4	1	0	0	1	0	0	0	16	1.3
BML<5	Macomona liliana	<5 5.45	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
BML5-15 BML>15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		>15 Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVIL-COND		Total	0	0	0	0	1	0	0	0	0	0	0	0	0 1	0.0 0.1
BNH<2	Nucula hartvigiana	10tai <2	1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
BNH>2	Nucula Hartvigiaria	>2	16	19	12	17	17	12	8	4	4	6	9	6	130	10.8
DIVITE 2		Total	17	19	12	17	17	12	8	4	4	6	9	6	131	10.9
BPA<5	Paphies australis	<5	0	0	1	2	0	0	0	1	1	0	0	0	5	0.4
BPA5-15	p.moo aaaaaano	5-15	0	0	0	1	1	0	0	0	0	0	0	0	2	0.2
BPA>15		>15	1	0	0	0	0	1	1	0	0	0	0	1	4	0.3
BPA-COND		Cond.analysis	17	9	10	7	17	20	18	0	1	2	9	18	128	10.7
		Total	18	9	11	10	18	21	19	1	2	2	9	19	139	11.6
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		0	0	0	0	0	0	0	0	1	0	1	0	2	0.2
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	1	0	0	0	0	3	0	1	5	0	10	0.8
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		0	0	0	1	0	0	0	0	1	1	0	0	3	0.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
PAO	Aonides oxycephala		2	1	0	18	0	2	0	0	3	6	3	0	35	2.9
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		5	8	0	1	1	0	3	13	2	8	4	3	48	4.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	2	0	1	0	2	1	1	2	2	11	0.9
PHF	"Capitellidae"		14	16	6	10	7	6	7	5	4	15	7	8	105	8.8
PMD	Magelona dakini		0	0	0	4	1	0	0	0	1	1	0	0	7	0.6
PNIC	Nereidae		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
POP	Orbinia papillosa		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAMPH	NON INDICATOR SPECIES		0	1	0	0	0	0	0	0	0	0	2	1	_	0.0
CCRAB	Amphipods Crabs		0	0	1	0	0	0	0	0	0	1	1	0	4 3	0.3 0.3
CCRAB	Crabs Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.3
CISO	Isopods		0	0	1	0	0	1	0	0	0	0	0	1	3	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		2	0	0	1	0	2	0	0	0	2	1	3	11	0.9
			0	3	1	0	0	0	0	4	0	0	2	1	11	0.9
COTH	Other Crustaceans			0	2	0	0	0	1	0	0	1	2	0	6	0.5
СОТН ВОТН	Other Crustaceans Bivalves		0			. ~								. ~		
вотн	Bivalves		-		0	0	0	Ο	1	1	1	0	1	0	5	0.4
BOTH GOTH	Bivalves Gastropods		0 0 0	1 0	0	0 0	0	0	1 0	1 0	1 0	0	1 0	0	5 0	0.4 0.0
BOTH GOTH EFEZ	Bivalves Gastropods Fellaster zealandiae		0	1	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH GOTH EFEZ EHOL	Bivalves Gastropods Fellaster zealandiae Holuthurians		0	1						0 0	0 0	0	0 0	0	0 0	0.0 0.0
BOTH GOTH EFEZ	Bivalves Gastropods Fellaster zealandiae		0 0	1 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0.0
BOTH GOTH EFEZ EHOL ONEM POTH	Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		0 0 0 0 1	1 0 0 0	0 0 0 1	0 0 0 18	0 0 0	0 0 0	0 0 0 1	0 0 2 2	0 0 1 3	0 0 0 6	0 0 0 2	0 0 0	0 0 3 35	0.0 0.0 0.3 2.9
BOTH GOTH EFEZ EHOL ONEM	Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans		0 0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 2	0 0 1	0 0 0	0 0 0	0 0 0	0 0 3	0.0 0.0 0.3 2.9 0.0
BOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT	Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		0 0 0 0 1 0	1 0 0 0 1 0	0 0 0 1 0	0 0 0 18 0	0 0 0 0 0	0 0 0 0 0	0 0 0 1 0	0 0 2 2 0 0	0 0 1 3 0	0 0 0 6 0	0 0 0 2 0	0 0 0 0 0	0 0 3 35 0	0.0 0.0 0.3 2.9 0.0
BOTH GOTH EFEZ EHOL ONEM POTH OOLIG	Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		0 0 0 0 1	1 0 0 0 1	0 0 0 1	0 0 0 18 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 2 2 0	0 0 1 3 0	0 0 0 6 0	0 0 0 2 0	0 0 0 0	0 0 3 35 0	0.0 0.0 0.3 2.9 0.0

TP April 2008

							С	ORE N	UMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
1000	AMPHIPODS			_			_	_	_		_	_	_			
ACOR APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
AFTIOX	BIVALVES	SIZE	0	0	Ů	U	U	0	0	Ů	Ů	0	Ů	Ů	_	0.0
BAB<2	Arthritica bifurca	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS<5	Austrovenus stutchburyi	<5	4	3	10	10	2	3	0	9	10	2	1	1	55	4.6
BAS>5		>5	0	0	0	3	0	0	0	1	5	0	0	0	9	0.8
BAS-COND		Cond.analysis	0 4	0	0 10	0 13	0	0	0	0 10	0 15	0	0	1 2	1 65	0.1 5.4
BML<5	Macomona liliana	Total <5	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
BML5-15	wadomona mana	5-15	0	0	0	0	0	0	0	ő	0	0	0	0	0	0.0
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
BNH<2	Nucula hartvigiana	<2	26	20	62	52	42	28	25	87	83	19	19	21	484	40.3
BNH>2		>2	11	9	15	18	20	18	21	31	28	15	8	15	209	17.4
BPA<5	Ponhico quatralia	Total	37 0	29	77 0	70 1	62 0	46 0	46	118 0	111	34 0	27	36	693	57.8 0.2
BPA5-15	Paphies australis	<5 5-15	0	0	1	0	0	0	0	0	0	0	0	0	2 1	0.2
BPA>15		5-15 >15	0	0	0	0	0	2	0	0	0	0	0	0	2	0.1
BPA-COND		Cond.analysis	7	4	3	2	8	10	3	17	1	0	13	12	80	6.7
		Total	7	4	4	3	8	12	3	17	2	0	13	12	85	7.1
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis Iemurum		0	0	2	3	0	0	0	0	0	0	0	0	5	0.4
GCA	GASTROPODS Cominella adspera		0	0	0	3	0	0	0	0	0	0	0	0	3	0.3
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GIVILE	OTHER			Ť	Ů			Ť	Ů	Ť	Ů	Ť	Ů	Ů		0.0
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	3	1	0	0	4	0.3
PAGL	Aglaophamus sp.		1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
PAO	Aonides oxycephala		1	1	1	4	0	0	0	0	8	2	0	0	17	1.4
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC PCOS	Pseudopolydora complex Cossura sp.		0	0	0	1 0	3 0	2	3 0	1 0	3	0	0	4 0	17 0	1.4 0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	ő	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
PHF	"Capitellidae"		5	0	0	2	2	2	1	1	0	2	2	1	18	1.5
PMD	Magelona dakini		0	1	0	6	1	0	1	0	0	1	1	0	11	0.9
PNIC	Nereidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae NON INDICATOR SPECIES		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAMPH	Amphipods		0	0	0	0	2	1	0	3	26	1	1	0	34	2.8
CCRAB	Crabs		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	0	2	0	0	0	2	1	5	0.4
COST	Ostracods		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	2	0	0	0	2	0.2
COTH	Other Crustaceans		0	0	0	0	0	1	1	0	0	1	0	1	4	0.3
BOTH GOTH	Bivalves		0	1	11	11 0	0	0	0	1 7	4	5 0	0	1 0	34 11	2.8
EFEZ	Gastropods Fellaster zealandiae		2	0	1 0	0	0	0	0	0	1	0	0	0	11 0	0.9 0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	2	0	0	0	0	0	1	0	0	0	3	0.3
POTH	Polychaetes		1	1	4	16	0	0	1	0	0	3	0	0	26	2.2
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
	TOTAL		59	40	112	132	80	67	58	159	178	52	47	58	1042	86.8

MI July 2007

							С	ORE	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS Corophiidae		1	0	0	0	0	1	0	0	0	0	0	0	2	0.2
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.2
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	1	18	3	9	10	2	11	4	6	0	8	2	74	6.2
BAB>2		>2	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
		Total	1	18	4	9	10	2	11	4	6	0	8	2	75	6.3
BAS<5	Austrovenus stutchburyi	<5	0	2	0	0	0	0	0	0	1	0	0	1	4	0.3
BAS>5 BAS-COND		>5 Cond analysis	2	4 0	9	2	2	2	2	0	3 0	1 0	2 0	2	31 0	2.6 0.0
BAS-COND		Cond.analysis Total	2	6	9	2	2	2	2	0	4	1	2	3	35	2.9
BML<5	Macomona liliana	<5	0	0	2	0	0	1	0	0	1	1	1	1	7	0.6
BML5-15		5-15	0	0	0	1	1	1	0	0	0	0	1	0	4	0.3
BML>15		>15	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	2	2	1	2	0	0	1	1	2	1	12	1.0
BNH<2	Nucula hartvigiana	<2	0	1	1	1	3	2	4	3	2	4	1	2	24	2.0
BNH>2		>2	0	0	0	0	0	2	2	0	1	0	2	1	8	0.7
BPA<5	Danhiaa ayatralia	Total <5	0	1 0	0	1	3	4 0	6	3	3 0	4 0	3 0	3	32 0	2.7 0.0
BPA<5 BPA5-15	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		2	16	6	5	4	9	4	9	8	7	4	14	88	7.3
GCA	GASTROPODS Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	2	0	0	0	0	0	1	0	1	0	0	4	0.3
0.11.12	OTHER			_	Ů	J	Ů	Ů	Ů		Ť		_	Ů	·	0.0
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		3	2	9	5	14	10	13	11	1	4	6	20	98	8.2
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		5	1	2	4	9	17	16	16	2	11	20	27	130	10.8
PAR PBOC	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0 4	0.0 0.3
PCOS	Pseudopolydora complex Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	ő	0	0	0	0	0	0	ő	0	ō	0	ō	0.0
PGLY	Glycera sp.		0	0	0	1	0	0	0	1	0	0	0	1	3	0.3
PHF	"Capitellidae"		1	7	14	9	6	3	7	3	19	0	3	1	73	6.1
PMD	Magelona dakini		2	0	3	2	2	1	2	0	0	0	1	0	13	1.1
PNIC	Nereidae		3	4	7	7	3	1	4	2	5	3	6	4	49	4.1
POP	Orbinia papillosa		1	5	6	10	3	11	2	1	11	10	15	4	79	6.6
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAMPH	NON INDICATOR SPECIES Amphipods		3	2	0	1	0	0	1	1	4	1	0	0	13	1.1
CCRAB	Crabs		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO			0	1	0	0	2	4	1	5	2	0	0	2	17	1.4
0100	Isopods		U			i	0	_	_	0	0					0.0
COST	Ostracods		0	0	0	0	U	0	0	U	U	0	0	0	0	0.0
COST CSHR	Ostracods Shrimps/Mysids		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
COST CSHR COTH	Ostracods Shrimps/Mysids Other Crustaceans		0 0 0	1	0 1	0	0 0	0	0 0	0	0 20	0 16	0	0	1 41	0.1 3.4
COST CSHR COTH BOTH	Ostracods Shrimps/Mysids Other Crustaceans Bivalves		0 0 0 10	1 3 37	0 1 19	0 0 18	0 0 17	0 0 5	0 0 15	0 0 14	0 20 25	0 16 14	0 1 30	0 0 11	1 41 215	0.1 3.4 17.9
COST CSHR COTH BOTH GOTH	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods		0 0 0 10 0	1 3 37 0	0 1 19 0	0 0 18 2	0 0 17 0	0 0 5 0	0 0 15 1	0 0 14 1	0 20 25 0	0 16 14 0	0 1 30 0	0 0 11 0	1 41 215 4	0.1 3.4 17.9 0.3
COST CSHR COTH BOTH GOTH EFEZ	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae		0 0 0 10 0	1 3 37 0 0	0 1 19 0	0 0 18 2 0	0 0 17 0	0 0 5 0	0 0 15 1	0 0 14 1 0	0 20 25 0	0 16 14 0	0 1 30 0	0 0 11 0	1 41 215 4 0	0.1 3.4 17.9 0.3 0.0
COST CSHR COTH BOTH GOTH EFEZ EHOL	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians		0 0 0 10 0 0	1 3 37 0 0	0 1 19 0	0 0 18 2 0	0 0 17 0 0	0 0 5 0 0	0 0 15 1 0	0 0 14 1 0	0 20 25 0 0	0 16 14 0 0	0 1 30 0 0	0 0 11 0 0	1 41 215 4 0	0.1 3.4 17.9 0.3 0.0
COST CSHR COTH BOTH GOTH EFEZ	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae		0 0 0 10 0	1 3 37 0 0	0 1 19 0 0	0 0 18 2 0	0 0 17 0	0 0 5 0	0 0 15 1	0 0 14 1 0	0 20 25 0	0 16 14 0	0 1 30 0	0 0 11 0	1 41 215 4 0	0.1 3.4 17.9 0.3 0.0
COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans		0 0 0 10 0 0 0	1 3 37 0 0 0	0 1 19 0 0 0 4	0 0 18 2 0 0	0 0 17 0 0 0	0 0 5 0 0 0	0 0 15 1 0 0	0 0 14 1 0 0	0 20 25 0 0 1	0 16 14 0 0 0	0 1 30 0 0 0	0 0 11 0 0 0 3	1 41 215 4 0 0	0.1 3.4 17.9 0.3 0.0 0.0
COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		0 0 0 10 0 0 0 1 4	1 3 37 0 0 0 1	0 1 19 0 0 0 4 19	0 0 18 2 0 0 0	0 0 17 0 0 0 1 7	0 0 5 0 0 0 2	0 0 15 1 0 0 0	0 0 14 1 0 0	0 20 25 0 0 1 23	0 16 14 0 0 0 1	0 1 30 0 0 0 2	0 0 11 0 0 0 3 7	1 41 215 4 0 0 17 126	0.1 3.4 17.9 0.3 0.0 0.0 1.4 10.5
COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT OEDW	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms Edwardsia		0 0 0 10 0 0 0 1 4 0 0	1 3 37 0 0 0 1 21 0 0	0 1 19 0 0 0 4 19 0 0	0 0 18 2 0 0 0 0 0 0	0 0 17 0 0 0 1 7	0 0 5 0 0 0 2 12 0 0	0 0 15 1 0 0 0 4	0 0 14 1 0 0 1 4 0 0	0 20 25 0 0 1 23 0 0	0 16 14 0 0 0 1 6 0	0 1 30 0 0 0 2 9 0	0 0 11 0 0 0 3 7 0	1 41 215 4 0 0 17 126	0.1 3.4 17.9 0.3 0.0 0.0 1.4 10.5
COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT	Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		0 0 0 10 0 0 0 1 4 0	1 3 37 0 0 0 1 21 0	0 1 19 0 0 0 4 19 0	0 0 18 2 0 0 0 0	0 0 17 0 0 0 1 7 0	0 0 5 0 0 0 2 12 0	0 0 15 1 0 0 0 4 0	0 0 14 1 0 0 1 4 0	0 20 25 0 0 0 1 23 0	0 16 14 0 0 0 1 6 0	0 1 30 0 0 0 2 9 0	0 0 11 0 0 0 3 7 0	1 41 215 4 0 0 17 126 0	0.1 3.4 17.9 0.3 0.0 0.0 1.4 10.5 0.0

Page 30 Doc #1520788

MI October 2007

NDICATOR SPECIES 1 2 3 4 5 6 7 8 9 10 11 12	7 8 9 10 11 12 TO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 1 0 3 1 0 0 0 0 0 0 0 3 0 1 1 0 3 0 0 0 0 1 2 0 1 1 1 0 3 0 0 0 0 0 0 0 1 1 1 1 0 3 2 0 0 0 0 0 0 0 1 1 1 1 3 2 0 1 1 1 1 3 2 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 3 0 2 1 1 2 1 0 0 1 2 1 1 0 0 1 2 1 1 0 0 0 0 0 0 3 0 2 1 1 2 1 1 0 0 1 2 1 1 1 0 0 1 2 1 1 1 0 0 0 1 2 1 1 1 0 0 0 1 0 2 0 1 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MEAN
ACOR Corophidide	0 0 0 0 0 0 2 0 1 1 0 3 1 0 0 0 0 0 3 0 1 1 0 3 0 0 0 1 2 0 1 1 1 0 1 2 0 1 1 1 1 0 1 2 1 1 1 1 1 1 3 2 1 1 0 1 1 0 1 0 1 0 0 1 0	8 1.5 2 0.2 0 1.7 3 0.3 1 1.8 0 0.0 4 2.0 0 0.8 4 2.0 0 0.8 4 2.0 0 0.0 6 1.3 0 0.7 5 1.3 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
APHOX	0 0 0 0 0 0 2 0 1 1 0 3 1 0 0 0 0 0 3 0 1 1 0 3 0 0 0 1 2 0 1 1 1 0 1 2 0 1 1 1 1 0 1 2 1 1 1 1 1 1 3 2 1 1 0 1 1 0 1 0 1 0 0 1 0	8 1.5 2 0.2 0 1.7 3 0.3 1 1.8 0 0.0 4 2.0 0 0.8 4 2.0 0 0.8 4 2.0 0 0.0 6 1.3 0 0.7 5 1.3 0 0.0 0 0 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
BINALYES	2 0 1 1 1 0 3 1 0 0 0 0 0 0 3 0 1 1 0 3 0 0 0 1 2 0 1 1 1 0 3 0 0 0 1 2 0 1 1 1 1 0 1 2 0 0 0 0 0 0 0 1 1 1 1 1 3 2 1 0 2 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0	8 1.5 2 0.2 1.7 3 1.8 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BAB>2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>2 0.2 0 1.7 3 0.3 1.8 0 0.0 4 2.0 0 0.8 4 0.3 0 0.2 0 0.0 6 1.3 7 0.6 3 0.7 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0</td>	2 0.2 0 1.7 3 0.3 1.8 0 0.0 4 2.0 0 0.8 4 0.3 0 0.2 0 0.0 6 1.3 7 0.6 3 0.7 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
SAS-5 Austrovenus stutchburyi <5 0 0 0 0 0 0 0 0 0	3 0 1 1 0 3 0 0 0 1 2 0 1 1 1 1 0 1 2 0	0 1.7 3 0.3 1 1.8 0.0 0 4 2.0 0 0.8 4 0.3 2 0.2 0 0.0 0 0.8 3 0.7 5 1.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
BAS-5 Austrovenus stutchburyi	0 0 0 1 2 0 1 2 0 1 1 1 1 1 1 1 1 1 1 1	3
BAS-5	1 1 1 1 0 1 2 1 1 1 1 0 1 1 2 1 1 1 1 1	1
BAS-COND	0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total	1 1 1 1 1 3 2 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4
BML-5 Macomona Illiana	1 0 2 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0	0 0.8 1 0.3 2 0.2 0.0 6 1.3 7 0.6 3 0.7 5 1.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
BML>15	1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 3 0 2 1 1 2 1 1 0 0 1 2 1 1 1 0 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0.2 0 0.0 6 1.3 7 0.6 3 0.7 5 1.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
BML-COND	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total	3 0 2 1 1 2 1 1 2 1 1 1 0 0 1 1 0 1 1 0 1 1 1 1	6 1.3 7 0.6 8 0.7 5 1.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
BNH<2 Nucula hartvigiana <2	1 0 0 1 0 2 0 1 0 1 2 1 1 1 0 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.6 0.7 5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
BNH>2	0 1 0 1 2 1 1 1 0 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 0.7 5 1.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
Total	1 1 0 2 2 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 1.3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
BPA<5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BPA5-15 BPA5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BPA>15 BPA-COND	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0
Total O O O O O O O O O	0 0	0.0 0.0 0.0 0.0
BTHL< 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0
BTHL>5	0 0 0 0 0 0 0	0.0
Total 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	
CUMACEANS		
CCL Colurostylis lemurum 0 1 0 2 1 0 1 0	 	0.0
CASTROPODS		5 0.4
GCA		0.4
OTHER ON THER ON THER ON THER ON THER ON THER ON THE	0 0 0 0 0	0.0
OAN Anthopleura aureoradiata 0 </td <td></td> <td>0.1</td>		0.1
POLYCHAETES PAA Aquilaspio aucklandica 2 7 8 6 1 7 10 3 11 0 5 13 PAGL Aglaophamus sp. 0		
PAA Aquilaspio aucklandica 2 7 8 6 1 7 10 3 11 0 5 13 PAGL Aglaophamus sp. 0 <td>0 0 0 0 0 0</td> <td>0.0</td>	0 0 0 0 0 0	0.0
PAGL Aglaophamus sp. 0		
PAO Aonides oxycephala 12 20 4 4 14 10 22 15 29 17 12 41 PAR Aricidea sp. 0 <td></td> <td>3 6.1</td>		3 6.1
PAR Aricidea sp. 0		0.0 00 16.7
PBOC Pseudopolydora complex 0 2 1 1 0 3 1 1 1 0 1 2 PCOS Cossura sp. 0		0.0
PCOS Cossura sp. 0		3 1.1
PGE Goniada sp. 0 <		0.0
PGLY Glycera sp. 0 0 1 0 18 4 PMD Magelona dakini 0 1 6 3 1 0 0 0 0 1 7 1 PNIC Nereidae 0 3 0 3 2 1 2 2 1 1 3 4 POP Orbinia papillosa 4 20 18 12 23 1 1 7 17 5 17 0 PPAR Paraonidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0.0
PHF "Capitellidae" 1 2 8 26 2 3 2 0 2 0 18 4 PMD Magelona dakini 0 1 6 3 1 0 0 0 1 7 1 PNIC Nereidae 0 3 0 3 2 1 2 2 1 1 3 4 POP Orbinia papillosa 4 20 18 12 23 1 1 7 17 5 17 0 PPAR Paraonidae 0	0 0 1 0 0 0	0.1
PMD Magelona dakini 0 1 6 3 1 0 0 0 1 7 1 PNIC Nereidae 0 3 0 3 2 1 2 2 1 1 3 4 POP Orbinia papillosa 4 20 18 12 23 1 1 7 17 5 17 0 PPAR Paraonidae 0 <td></td> <td>0.3</td>		0.3
PNIC Nereidae 0 3 0 3 2 1 2 2 1 1 3 4 POP Orbinia papillosa 4 20 18 12 23 1 1 7 17 5 17 0 PPAR Paraonidae 0		8 5.7
POP Orbinia papillosa 4 20 18 12 23 1 1 7 17 5 17 0 PPAR Paraonidae 0		0 1.7
PPAR Paraonidae 0 <		2 1.8 25 10.4
NON INDICATOR SPECIES		0.0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 0 0 0 0 0	0.0
CCRAB Crabs 0		0.2
CCUM Cumaceans 0 <t< td=""><td></td><td>0.0</td></t<>		0.0
CISO Isopods 0 0 0 2 1 0 0 0 0 0 0 0 0		0.3
COST Ostracods		0.0
CSHR Shrimps/Mysids 1 0 0 0 0 1 0		0.2 6 2.2
		7 3.9
GOTH Gastropods		0.1
EFEZ Fellaster zealandiae 0	3 2 7 3 4 2	0.0
EHOL Holuthurians 0 0 0 0 0 0 0 0 0 0 0	3 2 7 3 4 2 0 0 0 0 0 0	0.0
ONEM Nemerteans 6 4 4 3 4 3 2 0 1 2 3 3	3 2 7 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0	
POTH Polychaetes 4 13 23 20 3 2 2 9 0 36 26	3 2 7 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 2.9
OOLIG Oligochaetes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 7 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 3 3 2 2 9 0 36 26 1	5 2.9 10 11.7
	3 2 7 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 3 3 2 2 9 0 36 26 0 0 0 0 0 0	5 2.9 10 11.7 0 0.0
	3 2 7 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 3 3 2 2 9 0 36 26 0 0 0 0 0 0 0 0 0 0 0 0	5 2.9 10 11.7 0 0.0 0 0.0
OTHER Misc. Other 0	3 2 7 3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 2 3 3 2 2 9 0 36 26 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0	5 2.9 10 11.7 0 0.0

MI January 2008

							С	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	0	0	1	0	0	0	1	0	0	0	1	0	3	0.3
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	1	0	0	0	1	0	0	0	1	0	3	0.3
BAS<5	Austrovenus stutchburyi	<5	2	0	3	0	0	0	0	0	0	0	0	0	5	0.4
BAS>5 BAS-COND		>5 Cand analysis	1 0	0	7 0	2	1	1 0	2	0	1	0	0	3 0	18 0	1.5
BAS-COND		Cond.analysis Total	3	0	10	2	1	1	2	0	1	0	0	3	23	0.0 1.9
BML<5	Macomona liliana	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML5-15		5-15	1	0	0	1	0	0	0	0	0	0	0	0	2	0.2
BML>15		>15	0	1	0	0	2	0	0	0	0	0	0	0	3	0.3
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	1	0	1	2	0	0	0	0	0	0	0	5	0.4
BNH<2	Nucula hartvigiana	<2	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
BNH>2		>2	0	0	0	0	1	0	0	0	0	1	0	0	2	0.2
		Total	0	0	0	0	2	0	0	0	0	1	0	0	3	0.3
BPA<5	Paphies australis	<5 5 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15 BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BI A-COND		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		1	0	1	0	0	0	1	1	0	0	0	0	4	0.3
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp. OTHER		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OAN	POLYCHAETES		U	0	0	U	Ů	U	Ů	0	0	U	0	U	0	0.0
PAA	Aquilaspio aucklandica		4	3	4	7	2	8	24	15	4	1	6	6	84	7.0
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		16	7	4	16	13	6	13	16	25	23	25	12	176	14.7
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		0	2	3	0	0	0	1	0	0	0	0	0	6	0.5
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY PHF	Glycera sp. "Capitellidae"		2	0	1 31	0	1	2	9	0	0	1 2	0	1 8	8 57	0.7 4.8
PMD	Magelona dakini			'					-		-		U		31	4.0
			3	n	5	0	()	4	4	6	()	2	Ω	2	26	22
PNIC	-		3	0 2	5 0	0	0	4	4	6	0	2	0	2	26 21	2.2 1.8
PNIC POP	Nereidae Orbinia papillosa		3 2 3	0 2 7		0 0 4	0 1 4		4 1 3	6 2 0	0 3 11	2 3 2		2 3 3		2.2 1.8 4.3
	Nereidae		2	2	0	0	1	4	1	2	3	3	0	3	21	1.8
POP	Nereidae Orbinia papillosa		2	2 7	0 14	0 4	1 4	4 0	1 3	2 0	3 11	3 2	0 0	3 3	21 51	1.8 4.3
POP PPAR CAMPH	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods		2 3 0	2 7 0	0 14 0	0 4 0	1 4 0	4 0 0	1 3 0	0 0	3 11 0	3 2 0	0 0 0	3 3 0	21 51 0	1.8 4.3 0.0
POP PPAR CAMPH CCRAB	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs		2 3 0 0	2 7 0 0 1	0 14 0 0	0 4 0 0	1 4 0 0	4 0 0	1 3 0	2 0 0	3 11 0 0	3 2 0 0	0 0 0	3 3 0	21 51 0 0 3	1.8 4.3 0.0 0.0 0.3
POP PPAR CAMPH CCRAB CCUM	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans		2 3 0 0 0 0	2 7 0 0 1 0	0 14 0 0 0 0	0 4 0 0 0 0	1 4 0 0 0 0	4 0 0 0	1 3 0 0 1 0	2 0 0 0 0 0	3 11 0 0 0 0	3 2 0 0 1 0	0 0 0	3 3 0 0 0 0	21 51 0 0 3 0	1.8 4.3 0.0 0.0 0.3 0.0
POP PPAR CAMPH CCRAB CCUM CISO	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods		2 3 0 0 0 0 0	2 7 0 0 1 0 0	0 14 0 0 0 0 0	0 4 0 0 0 0 0	1 4 0 0 0 0 0	0 0 0 0 0	1 3 0 0 1 0 0	2 0 0 0 0 0 0	3 11 0 0 0 0 0	3 2 0 0 1 0 1	0 0 0 0 0 0 4	3 3 0 0 0 0	21 51 0 0 3 0 7	1.8 4.3 0.0 0.0 0.3 0.0 0.6
POP PPAR CAMPH CCRAB CCUM CISO COST	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods		2 3 0 0 0 0 0	2 7 0 1 0 0 0	0 14 0 0 0 0 0 1	0 4 0 0 0 0 0	1 4 0 0 0 0 0 0	4 0 0 0 0 0 0 0	1 3 0 0 1 0 0 0	2 0 0 0 0 0 1 0	3 11 0 0 0 0 0	3 2 0 0 1 0 1 0	0 0 0 0 0 0 4 0	3 3 0 0 0 0 0	21 51 0 0 3 0 7 0	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0
POP PPAR CAMPH CCRAB CCUM CISO	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods		2 3 0 0 0 0 0	2 7 0 0 1 0 0	0 14 0 0 0 0 0	0 4 0 0 0 0 0	1 4 0 0 0 0 0	0 0 0 0 0	1 3 0 0 1 0 0	2 0 0 0 0 0 0	3 11 0 0 0 0 0	3 2 0 0 1 0 1	0 0 0 0 0 0 4	3 3 0 0 0 0	21 51 0 0 3 0 7	1.8 4.3 0.0 0.0 0.3 0.0 0.6
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids		2 3 0 0 0 0 0 0	2 7 0 1 0 0 0 0	0 14 0 0 0 0 0 1 0	0 4 0 0 0 0 0 0	1 4 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0	1 3 0 1 0 0 0 0	2 0 0 0 0 0 1 0 0	3 11 0 0 0 0 0 0	3 2 0 1 0 1 0 1	0 0 0 0 0 0 4 0	3 3 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans		2 3 0 0 0 0 0 0 0	2 7 0 0 1 0 0 0 0 0	0 14 0 0 0 0 0 1 0 0 6	0 4 0 0 0 0 0 0 0 0	1 4 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	1 3 0 0 1 0 0 0 0 0 42	2 0 0 0 0 0 1 0 0	3 11 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1	0 0 0 0 0 0 4 0 0	3 3 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1 8.9
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves		2 3 0 0 0 0 0 0 0	2 7 0 0 1 0 0 0 0 0 18	0 14 0 0 0 0 0 1 0 0 6 3	0 4 0 0 0 0 0 0 0 0 40 2	1 4 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	1 3 0 0 1 0 0 0 0 0 42 0	0 0 0 0 0 0 1 0 0 0	3 11 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 1	0 0 0 0 0 0 4 0 0	3 3 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians		2 3 0 0 0 0 0 0 0 0	2 7 0 1 0 0 0 0 0 18 0 0 0	0 14 0 0 0 0 1 0 0 6 3 0 0	0 4 0 0 0 0 0 0 0 40 2 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0	1 3 0 0 1 0 0 0 0 42 0 0 0	0 0 0 0 0 1 0 0 0 0 0 0	3 11 0 0 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 1 0 0 0	0 0 0 0 0 4 0 0 0 0	3 3 0 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107 100 0 0	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8 0.0
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans		2 3 0 0 0 0 0 0 0 0 0	2 7 0 1 0 0 0 0 0 18 0 0 0 0	0 14 0 0 0 0 0 1 0 0 6 3 0 0 0 0 3	0 4 0 0 0 0 0 0 0 0 40 2 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 0 0 1 0 0 0 0 42 0 0 0 0	2 0 0 0 0 0 1 0 0 0 0 0 0 0 0	3 11 0 0 0 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 1 0 0 0 0 0	0 0 0 0 0 0 4 0 0 0 0 0	3 3 0 0 0 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107 10 0 0 0 12	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8 0.0 0.0 0.0 0.0
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 0 1 0 0 0 0 0 18 0 0 0 0 1 0	0 14 0 0 0 0 0 1 0 0 6 3 0 0 0 0 3	0 4 0 0 0 0 0 0 0 40 2 0 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	1 3 0 0 1 0 0 0 0 42 0 0 0 0 2 2	2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	3 11 0 0 0 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 0 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107 10 0 0 0 12 61	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8 0.0 0.0 0.0 1.0 5.1
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 0 1 0 0 0 0 18 0 0 0 0 1 2 0	0 14 0 0 0 0 1 0 0 6 3 0 0 0 3 1 0	0 4 0 0 0 0 0 0 0 40 2 0 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 0 0 1 0 0 0 0 42 0 0 0 0 2 2	2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 11 0 0 0 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 1 0 0 0 4 0	0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0	3 3 0 0 0 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107 10 0 0 0 12 61	1.8 4.3 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8 0.0 0.0 0.0 1.0 5.1
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH GOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 0 1 0 0 0 0 0 18 0 0 0 0 1 2 0 0	0 14 0 0 0 0 0 1 0 0 6 3 0 0 0 3 1 1 0 0 0	0 4 0 0 0 0 0 0 0 0 0 40 2 0 0 0 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 0 0 1 0 0 0 0 42 0 0 0 0 2 2 0 0	2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	3 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107 10 0 0 0 12 61 0	1.8 4.3 0.0 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8 0.0 0.0 0.0 1.0 0.5 1.1
POP PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG	Nereidae Orbinia papillosa Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 0 1 0 0 0 0 18 0 0 0 0 1 2 0	0 14 0 0 0 0 1 0 0 6 3 0 0 0 3 1 0	0 4 0 0 0 0 0 0 0 40 2 0 0 0	1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0	1 3 0 0 1 0 0 0 0 42 0 0 0 0 2 2	2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 11 0 0 0 0 0 0 0 0 0 0	3 2 0 1 0 1 0 1 1 1 0 0 0 4 0	0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0	3 3 0 0 0 0 0 0 0 0 0 0	21 51 0 0 3 0 7 0 1 107 10 0 0 0 12 61	1.8 4.3 0.0 0.3 0.0 0.6 0.0 0.1 8.9 0.8 0.0 0.0 0.0 1.0 5.1

Page 32 Doc #1520788

MI April 2008

							C	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
	AMPHIPODS															
ACOR APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0 1	0	0 1	0.0 0.1
AFTIOX	BIVALVES	SIZE	0	Ů	Ů	0	0	Ů	Ů	Ů	Ü	Ů		Ů		0.1
BAB<2	Arthritica bifurca	<2	0	0	0	0	0	0	5	1	1	0	1	2	10	0.8
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	5	1	1	0	1	2	10	0.8
BAS<5	Austrovenus stutchburyi	<5	1	0	4	0	0	2	1	4	2	0	2	0	16	1.3
BAS>5		>5	0	0	4	1	0	1	0	0	0	1	1	0	8	0.7
BAS-COND		Cond.analysis	0	0	0 8	0	0	0 3	0	0 4	0 2	0 1	0 3	0	0 24	0.0 2.0
BML<5	Macomona liliana	Total <5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML5-15	Wacomona ililana	5-15	0	ő	0	0	0	0	2	0	0	1	1	1	5	0.4
BML>15		>15	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	2	0	1	1	1	1	6	0.5
BNH<2	Nucula hartvigiana	<2	0	1	0	1	0	0	0	0	0	0	0	1	3	0.3
BNH>2		>2	2	0	0	0	3	0	0	0	3	0	1	0	9	8.0
		Total	2	1	0	1	3	0	0	0	3	0	1	1	12	1.0
BPA<5 BPA5-15	Paphies australis	<5 5 15	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
BPA5-15 BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA>15 BPA-COND		>15 Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BFA-COND		Total	0	0	0	1	0	0	0	0	0	0	0	0	1	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
BTHL>5	THOOFA IABNOA	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
	CUMACEANS															
CCL	Colurostylis lemurum		0	4	3	5	1	3	2	2	2	3	1	0	26	2.2
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OAN	OTHER		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OAN	Anthopleura aureoradiata POLYCHAETES		U	U	U	U	0	U	U	U	U	U	U	U	U	0.0
PAA	Aquilaspio aucklandica		9	2	12	4	2	7	3	12	24	7	10	13	105	8.8
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		6	13	5	13	19	25	14	38	14	22	9	9	187	15.6
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		0	0	2	0	0	0	0	0	0	1	0	1	4	0.3
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY PHF	Glycera sp. "Capitellidae"		1	0 1	1 19	1	0	0 1	1	1 2	0 3	0 1	0 5	0 3	5 38	0.4 3.2
PMD	Magelona dakini		0	0	3	0	0	0	1	2	1	0	4	6	17	1.4
PNIC	Nereidae		3	1	1	2	0	1	6	3	3	0	4	5	29	2.4
POP	Orbinia papillosa		1	Ö	5	3	4	1	1	2	7	1	0	ő	25	2.1
PPAR	Paraonidae		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
	NON INDICATOR SPECIES															
CAMPH	Amphipods		0	0	1	0	0	0	0	0	0	0	1	0	2	0.2
CCRAB	Crabs		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		1	0	0	1	1	0	6	1	1	2	1	0	14	1.2
COST	Ostracods Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0 1	0.0
CSHR COTH	Shrimps/Mysids Other Crustaceans		0 1	1	9	15	0	0	1	0	18	30	0	0	74	0.1 6.2
ВОТН	Bivalves		3	19	13	14	13	3	4	5	6	15	2	7	104	8.7
GOTH	Gastropods		0	0	0	2	0	0	0	0	0	0	0	0	2	0.2
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	4	0	0	0	0	0	1	4	1	0	10	0.8
POTH	Polychaetes		1	0	15	0	1	4	2	0	14	0	4	2	43	3.6
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	744	0.0
	TOTAL		29	42	102	64	45	48	50	73	101	89	49	52	744	62.0

KB July 2007

							С	ORE	NUMBE	ER .						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	1	0	0	0	0	1	0.0
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	8	5	26	3	0	2	2	3	2	0	2	3	56	4.7
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DAO - 5	A (Total	8	5	26	3	0	2	2	3	2	0	2	3	56	4.7
BAS<5 BAS>5	Austrovenus stutchburyi	<5 >5	5 1	7 1	5 3	10 3	11 6	7	14 3	1 2	3 1	11 9	13 7	3	90 39	7.5 3.3
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
B/10 00/1B		Total	6	8	8	13	17	9	17	3	4	20	20	4	129	10.8
BML<5	Macamona liliana	<5	0	0	4	1	0	3	0	0	0	0	0	0	8	0.7
BML5-15		5-15	0	0	0	1	0	0	1	0	0	1	1	0	4	0.3
BML>15		>15	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH<2	Nuovio hortviaiono	Total <2	1	0	1	0	0	0	0	0	0	0	2	0	13 2	1.1 0.2
BNH>2	Nucula hartvigiana	>2	1	1	1	1	0	0	0	0	0	0	0	0	4	0.2
DIVITE Z		Total	2	1	2	1	0	0	0	0	0	0	0	0	6	0.5
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTIII :	The condition	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5 BTHL>5	Theora lubrica	<5 . 5	0	0	0	0	0	0	0	0	0	0	0	1 0	1 0	0.1
B1HF>2		>5 Total	0	0	0	0	0	0	0	0	0	0	0	1	1	0.0 0.1
	CUMACEANS	Total	0	Ů	Ů	Ů	Ť	Ů	Ü	U	Ů	U	Ů			0.1
CCL	Colurostylis lemurum		2	0	0	2	0	3	2	0	0	3	5	0	17	1.4
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAN	OTHER		_		_							_			_	
OAN	Anthopleura aureoradiata POLYCHAETES		0	0	0	0	2	0	0	0	1	0	0	0	3	0.3
PAA	Aquilaspio aucklandica		4	8	0	3	2	2	0	1	0	0	1	0	21	1.8
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	14	2	2	1	0	0	0	0	0	0	1	20	1.7
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		3	0	0	9	3	0	4	0	1	1	4	1	26	2.2
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC PGE	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0 2	0.0 0.2
PGLY	Goniada sp. Glycera sp.		0	0	0	1	1	1	0	0	0	1	0	0	4	0.2
PHF	"Capitellidae"		83	82	31	59	77	29	62	47	71	74	25	50	690	57.5
PMD	Magelona dakini		0	1	3	0	1	3	5	7	7	2	3	6	38	3.2
PNIC	Nereidae		3	1	1	2	1	1	0	3	2	0	2	1	17	1.4
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAMPII	NON INDICATOR SPECIES		_		-			-		_		0	_		•	0.0
CAMPH CCRAB	Amphipods Crabs		0	0	0	0	0	0	0 3	0	0	0	0 1	0	0 10	0.0
CCRAB	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.8 0.0
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
COTH	Other Crustaceans		1	0	0	0	0	1	0	1	1	0	1	0	5	0.4
BOTH	Bivalves		0	2	0	5	3	2	2	4	3	5	1	7	34	2.8
GOTH	Gastropods		5	3	0	0	2	0	1	1	2	1	1	2	18	1.5
EFEZ EHOL	Fellaster zealandiae Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
ONEM	Nemerteans		4	2	0	3	1	2	1	0	1	0	0	2	16	1.3
POTH	Polychaetes		0	2	0	0	0	1	Ö	0	1	1	1	0	6	0.5
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	2	0	0	0	0	2	0.2
			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia				-											
OEDW OTHER	Edwardsia Misc. Other TOTAL		0	0 130	0 78	0 105	0 112	0 61	0 100	0 75	0 96	0 110	0 69	0 78	0 1136	0.0 94.7

Page 34 Doc #1520788

KB October 2007

							С	ORE N	UMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
1000	AMPHIPODS							_	_		_	_				
ACOR APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
AITIOX	BIVALVES	SIZE	U	Ů	Ů	Ü	Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ŭ	Ů	0.0
BAB<2	Arthritica bifurca	<2	0	4	0	7	6	7	10	5	0	13	9	0	61	5.1
BAB>2		>2	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
		Total	0	4	0	7	6	8	10	5	0	13	9	0	62	5.2
BAS<5	Austrovenus stutchburyi	<5	4	4	1	2	3	3	7	4	0	3	4	6	41	3.4
BAS>5		>5	2	3	2	3	5	3	8	4	2	4	4	6	46	3.8
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML<5	Macamona liliana	Total <5	6 1	7	3	5	8	6	15 0	8	0	7	8	12 0	87 7	7.3 0.6
BML5-15	Macamona illana	5-15	0	0	0	0	2	0	0	0	0	0	0	0	2	0.6
BML>15		>15	0	0	0	1	0	0	0	0	1	0	0	0	2	0.2
BML-COND		Cond.analysis	0	0	0	0	0	0	0	ő	0	0	0	0	0	0.0
		Total	1	1	0	3	3	2	0	0	1	0	0	0	11	0.9
BNH<2	Nucula hartvigiana	<2	1	0	0	0	1	0	0	1	0	0	0	0	3	0.3
BNH>2		>2	0	0	0	0	1	0	0	0	0	0	1	0	2	0.2
		Total	1	0	0	0	2	0	0	1	0	0	1	0	5	0.4
BPA<5	Paphies australis	<5	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	Total <5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
BTHL>5	i neora iublica	<5 >5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DITIES		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS	. otal		Ů	Ů	Ů	Ů	Ů	Ů	Ť	Ů	Ů	Ť	Ů		0.0
CCL	Colurostylis lemurum		0	1	0	0	1	0	1	1	2	0	0	0	6	0.5
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DAA	POLYCHAETES		_					_	-		_	4	_		44	
PAA PAGL	Aquilaspio aucklandica Aglaophamus sp.		0 1	1 2	0	0	3	3	1	1 0	0	1	0	1 0	11 3	0.9 0.3
PAGL	Aonides oxycephala		0	0	1	12	1	1	1	0	0	0	0	0	16	1.3
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		0	0	1	1	0	0	0	0	0	0	2	0	4	0.3
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		2	4	2	0	2	1	3	4	0	1	1	1	21	1.8
PHF	"Capitellidae"		26	17	49	6	38	28	45	63	28	43	18	15	376	31.3
PMD	Magelona dakini		2	1	0	1	1	4	5	0	7	7	0	4	32	2.7
PNIC	Nereidae		2	0	1	2	2	2	4	2	1	1	2	11	30	2.5
POP PPAR	Orbinia papillosa Paraonidae		0	0	0	0	0	0	0	0	0	0	0	1 0	1 0	0.1 0.0
ICAN	NON INDICATOR SPECIES		U	J	J	J	J	,	_	_	_	,	U	J	U	0.0
CAMPH	Amphipods		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
CCRAB	Crabs		2	0	0	0	0	1	1	Ö	1	1	4	1	11	0.9
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	0	0	0	1	1	0	0	0	3	0.3
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	1	2	0	1	1	0	0	0	1	0	6	0.5
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
BOTH	Bivalves		3	1	0	0	1	1	1	2	5	0	1	1	16	1.3
GOTH	Gastropods		1	0	0	0	0	2	0	1	0	0	0	0	4	0.3
			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EFEZ	Fellaster zealandiae				0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0		-		^	^							_	
EHOL ONEM	Holuthurians Nemerteans		0	1	0	0	0	0	1	0	0	1	0	3	6	0.5
EHOL ONEM POTH	Holuthurians Nemerteans Polychaetes		0	1 0	0	4	1	1	0	0	0	0	2	0	8	0.7
EHOL ONEM POTH OOLIG	Holuthurians Nemerteans Polychaetes Oligochaetes		0 0	1 0 0	0 0	4 0	1 0	1 0	0	0 0	0	0	2 0	0 0	8 0	0.7 0.0
EHOL ONEM POTH OOLIG OFLAT	Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		0	1 0	0	4	1	1	0	0	0	0	2	0	8 0 0	0.7 0.0 0.0
EHOL ONEM POTH OOLIG	Holuthurians Nemerteans Polychaetes Oligochaetes		0 0 0	1 0 0 0	0 0 0	4 0 0	1 0 0	1 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 0 0	0 0 0	8 0	0.7 0.0

KB January 2008

							COR	E NUN	IBER						
	INDICATOR SPECIES AMPHIPODS		1	2	3	4	5	6	7	9	10	11	12	TOTAL	MEAN
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae BIVALVES	SIZE	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAB<2	Arthritica bifurca	SIZE <2	1	1	1	2	0	2	2	0	1	4	11	25	2.3
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	1	1	2	0	2	2	0	1	4	11	25	2.3
BAS<5	Austrovenus stutchburyi	<5	0	1	3	0	0	0	1	0	0	0	0	5	0.5
BAS>5		>5	5	6	2	2	6	11	11	5	4	7	8	67	6.1
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML<5	Macamona liliana	Total <5	5	7	5	0	6 1	11	12	5	0	7	8	72	6.5
BML5-15	Macamona IIIIana	5-15	0	0	0	0	0	1	2	0	2	0	0	1 5	0.1 0.5
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	1	1	2	0	2	0	0	6	0.5
BNH<2	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DD4 -5	D 11 1 1	Total	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA<5 BPA5-15	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0.0
5.7.00.15		Total	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS														
CCL	Colurostylis lemurum GASTROPODS		0	0	0	0	0	0	0	0	0	0	0	0	0.0
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER														
OAN	Anthopleura aureoradiata		0	1	0	0	2	0	1	0	0	1	0	5	0.5
	POLYCHAETES														
PAA	Aquilaspio aucklandica		0	1	1	0	1	1	0	0	0	0	0	4	0.4
PAGL PAO	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAC	Aonides oxycephala Aricidea sp.		0	0	0	0	0	0	1	0	0	0	0	3 0	0.3 0.0
PBOC	Pseudopolydora complex		0	0	0	0	1	2	0	0	0	0	0	3	0.3
PCOS	Cossura sp.		0	0	0	0	0	1	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		3	1	0	0	2	1	3	0	1	1	1	13	1.2
PHF	"Capitellidae"		6	0	34	6	3	2	4	15	21	3	3	97	8.8
PMD PNIC	Magelona dakini Nereidae		1	0	0	0	2	0	1 1	3	2	3	0 1	12 6	1.1
POP	Orbinia papillosa		0	1 0	0	0	0	1 0	0	0	0	1	1	1	0.5 0.1
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0.0
	NON INDICATOR SPECIES														
CAMPH	Amphipods		0	0	0	0	0	0	2	0	0	0	0	2	0.2
CCRAB	Crabs		0	0	0	1	0	0	1	0	0	1	0	3	0.3
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	1	0	0	0	1	0	2	0.2
COST CSHR	Ostracods Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0 1	0.0 0.1
COTH	Shrimps/Mysids Other Crustaceans		0	1 7	1	0	0	2	2	0	1	2	0	1 15	1.4
BOTH	Bivalves		0	0	0	0	0	0	0	0	0	0	0	0	0.0
GOTH	Gastropods		0	0	0	0	0	0	2	0	1	1	2	6	0.5
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		1	0	0	1	0	0	0	0	0	0	0	2	0.2
POTH	Polychaetes		1	0	0	2	0	0	1	0	1	0	0	5	0.5
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT OEDW	Flatworms Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
	Misc. Other			0	0	0	0	0	0	0	-	0	0	-	0.0
OTHER	Misc. Other		0	U	U	U	U		L)	()	0	U	L)	0	

Page 36 Doc #1520788

KB April 2008

							С	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
1000	AMPHIPODS			_			_	_	_							
ACOR APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0 1	0.0 0.1
AFTIOX	BIVALVES	SIZE	0	0	_	U	Ů	0	0	Ů		Ů		Ů	-	0.1
BAB<2	Arthritica bifurca	<2	4	2	0	15	1	10	23	2	0	1	14	13	85	7.1
BAB>2		>2	0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
		Total	4	2	0	15	1	10	24	2	0	1	14	13	86	7.2
BAS<5	Austrovenus stutchburyi	<5	0	0	2	0	0	1	0	0	2	0	0	0	5	0.4
BAS>5		>5	3	2	2	3	2	4	9	3	7	6	15	3	59	4.9
BAS-COND		Cond.analysis	0	0	0 4	0	0	1 6	9	0 3	0 9	0 6	0 15	0 3	1 65	0.1 5.4
BML<5	Macamona liliana	Total <5	1	0	0	0	1	0	0	0	0	0	0	0	2	0.2
BML5-15	wacamona iliana	5-15	0	1	0	0	0	0	0	0	0	0	1	1	3	0.2
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	1	0	0	1	0	0	0	0	0	1	1	5	0.4
BNH<2	Nucula hartvigiana	<2	1	0	1	0	0	0	0	0	0	0	0	0	2	0.2
BNH>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	0	1	0	0	0	0	0	0	0	0	0	2	0.2
BPA<5	Paphies australis	<5 5 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15 BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA>15 BPA-COND		>15 Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DI A-COND		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	1	1	0	0	0	0	0	0	0	0	2	0.2
BTHL>5		>5	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
		Total	0	0	2	1	0	0	0	0	0	0	0	0	3	0.3
	CUMACEANS															
CCL	Colurostylis lemurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OAN	OTHER		0	0	0	0	0	_	0						0	0.0
OAN	Anthopleura aureoradiata POLYCHAETES		U	0	U	U	0	0	0	0	0	0	0	0	U	0.0
PAA	Aquilaspio aucklandica		0	2	0	2	1	0	1	0	1	0	1	0	8	0.7
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	ő	0	0.0
PAO	Aonides oxycephala		0	4	0	0	0	0	1	0	0	1	0	1	7	0.6
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0 11	0	0	0	0	1	0	0 3	2	0 9	0 4	0	3 130	0.3 10.8
PHF PMD	"Capitellidae" Magelona dakini		5	0	35 2	16 0	28 1	12 1	1	0	6 2	2	0	2 0	130	10.8
PNIC	Nereidae		1	2	0	2	0	1	2	0	0	1	0	1	10	0.8
POP	Orbinia papillosa		0	2	0	0	0	0	0	0	0	0	0	Ö	2	0.2
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	NON INDICATOR SPECIES															
CAMPH	Amphipods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCRAB	Crabs		0	0	0	1	0	1	0	0	0	0	0	0	2	0.2
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	0	0	0	0	1	0	1	0	3	0.3
COST CSHR	Ostracods Shrimps/Mysids		0	0	0	0	0	0	0	0	0 1	0	0	0	0 1	0.0 0.1
COTH	Shrimps/Mysids Other Crustaceans		0	1	0	0	0	0	0	0	0	0	2	0	3	0.1
ВОТН	Bivalves		1	1	3	0	0	4	1	0	1	1	3	0	15	1.3
GOTH	Gastropods		0	1	1	1	0	0	0	0	2	0	0	0	5	0.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
POTH	Polychaetes		1	1	0	1	0	0	0	0	0	0	0	0	3	0.3
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	TOTAL		28	21	49	43	34	37	41	8	25	22	41	21	370	30.8

Appendix 2 - Whaingaroa Harbour species/taxonomic group abundances

TU October 2007

							С	ORE	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
	AMPHIPODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0 5	0	0	0.0
APHOX	Phoxocephalidae BIVALVES	SIZE	0	U	3	0	0	1	0	U	0	1	5	U	10	8.0
BAB<2	Arthritica bifurca	<2	10	6	3	4	13	14	1	1	1	14	12	3	82	6.8
BAB>2	, wantiod bildrod	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	10	6	3	4	13	14	1	1	1	14	12	3	82	6.8
BAS<5	Austrovenus stutchburyi	<5	37	14	26	14	17	25	26	15	13	6	11	11	215	17.9
BAS>5	•	>5	17	25	18	31	37	25	34	31	32	29	24	25	328	27.3
BAS-COND		Cond.analysis	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
		Total	54	40	44	45	54	50	60	46	45	35	35	36	544	45.3
BML<5	Macamona liliana	<5	1	3	2	0	1	2	0	0	2	1	3	1	16	1.3
BML5-15		5-15	1	0	0	1	2	0	2	0	0	1	1	2	10	8.0
BML>15		>15	5	1	2	1	0	2	5	2	0	5	2	2	27	2.3
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	7	4	4	2	3	4	7	2	2	7	6	5	53	4.4
BNH<2	Nucula hartvigiana	<2	4	2	1	0	4	5	7	2	0	1	7	5	38	3.2
BNH>2		>2	22	37	13	34	35	28	51	36	17	31	15	28	347	28.9
DDA<5	Danhina quatralia	Total	26	39	14	34	39	33	58	38	17	32	22	33	385	32.1
BPA<5	Paphies australis	<5 5.15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15 BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			-												0	0.0
BPA-COND		Cond.analysis Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5	THEOTA IUDIICA	>5 >5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BINL>5		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS	Total		Ů		0	Ů	Ů	Ů	Ü	Ů			Ü	_	0.0
CCL	Colurostylis lemurum		0	2	1	3	2	2	1	0	0	2	1	0	14	1.2
002	GASTROPODS			_	·	J				Ů	Ť	_		Ů		
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		5	6	2	6	5	8	6	10	5	9	4	4	70	5.8
	OTHER															
OAN	Anthopleura aureoradiata		2	5	1	1	1	0	1	2	0	1	3	0	17	1.4
	POLYCHAETES															
PAA	Aquilaspio aucklandica		6	11	1	7	13	11	10	8	2	13	6	7	95	7.9
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
PAO	Aonides oxycephala		0	7	0	32	1	0	1	0	32	38	5	1	117	9.8
PAR	Aricidea sp.		1	0	1	0	0	0	0	0	0	0	0	0	2	0.2
PBOC	Pseudopolydora complex		0	0	0	1	1	1	0	0	0	0	0	0	3	0.3
PCOS	Cossura sp.		0	1	0	0	0	0	0	0	1	0	0	0	2	0.2
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	1	2	0	0	1	1	1	0	1	0	1	8	0.7
PHF	"Capitellidae"		12	11	6	7	7	20	19	1	4	7	8	8	110	9.2
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		7	7	1	6	5	9	5	0	1	4	5	2	52	4.3
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
CAMPII	NON INDICATOR SPECIES		0	1	0	4	1	1	1	0	0	0	1	0	_	0.0
CAMPH	Amphipods		-	1	0	4 2	2	4	1	1	1	1	1	0	9 16	0.8 1.3
ICCDVD	Crahe				U			0	0	0	0	0	0	0	16 0	1.3 0.0
CCRAB	Crabs		2		^	Λ			· U	U	U	U		U	U	U.U
ССИМ	Cumaceans		0	0	0	0	0			n	n	Λ	1	n	2	0.3
CCUM CISO	Cumaceans Isopods		0	0 2	0	0	0	0	0	0	0	0	1	0	3	0.3
CCUM CISO COST	Cumaceans Isopods Ostracods		0 0 0	0 2 0	0 1	0	0 0	0	0 0	0	0	0	0	0	1	0.1
CCUM CISO COST CSHR	Cumaceans Isopods Ostracods Shrimps/Mysids		0 0 0	0 2 0 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0	0 0	0	1 0	0.1 0.0
CCUM CISO COST CSHR COTH	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans		0 0 0 0	0 2 0 0	0 1 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	0	0 0 1	0	0 0	1 0 3	0.1 0.0 0.3
CCUM CISO COST CSHR	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves		0 0 0	0 2 0 0	0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 1	0	0 0 1	0	1 0	0.1 0.0 0.3 0.3
CCUM CISO COST CSHR COTH BOTH	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans		0 0 0 0 0	0 2 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 1	0 0 1 0	0 0 1 0	0 0 1 0	0 0 0	1 0 3 4	0.1 0.0 0.3
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods		0 0 0 0 0 1 3	0 2 0 0 0 1	0 1 0 0 0 5	0 0 0 0 1	0 0 0 0 0 3	0 0 0 0 0 5	0 0 0 0 0 5	0 0 0 1 6	0 0 1 0 8	0 0 1 0 2	0 0 1 0 5	0 0 0 0 3	1 0 3 4 64	0.1 0.0 0.3 0.3 5.3
CCUM CISO COST CSHR COTH BOTH GOTH	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae		0 0 0 0 0 1 3	0 2 0 0 0 1 9	0 1 0 0 0 5	0 0 0 0 1 10 0	0 0 0 0 0 3	0 0 0 0 0 5	0 0 0 0 0 5	0 0 0 1 6	0 0 1 0 8 0	0 0 1 0 2 0	0 0 1 0 5	0 0 0 0 3	1 0 3 4 64	0.1 0.0 0.3 0.3 5.3
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians		0 0 0 0 0 1 3 0	0 2 0 0 0 1 9 0	0 1 0 0 0 5 0	0 0 0 0 1 10 0	0 0 0 0 0 3 0	0 0 0 0 5 0	0 0 0 0 5 0	0 0 0 1 6 0	0 0 1 0 8 0	0 0 1 0 2 0	0 0 1 0 5 0	0 0 0 0 3 0 0	1 0 3 4 64 0	0.1 0.0 0.3 0.3 5.3 0.0
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans		0 0 0 0 0 1 3 0	0 2 0 0 0 1 9 0	0 1 0 0 0 5 0	0 0 0 0 1 10 0	0 0 0 0 0 3 0 0	0 0 0 0 0 5 0	0 0 0 0 0 5 0	0 0 0 1 6 0 0	0 0 1 0 8 0 0	0 0 1 0 2 0 0 3	0 0 1 0 5 0 0	0 0 0 0 3 0 0	1 0 3 4 64 0 0	0.1 0.0 0.3 0.3 5.3 0.0 0.0
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		0 0 0 0 0 1 3 0 0	0 2 0 0 0 1 9 0 0	0 1 0 0 0 5 0 0 2 2	0 0 0 0 1 10 0 0	0 0 0 0 0 3 0 0 0	0 0 0 0 5 0 0 0 3	0 0 0 0 0 5 0 0	0 0 0 1 6 0 0	0 0 1 0 8 0 0 0	0 0 1 0 2 0 0 3 2	0 0 1 0 5 0 0 2	0 0 0 0 3 0 0	1 0 3 4 64 0 0 9	0.1 0.0 0.3 0.3 5.3 0.0 0.0 0.8 1.4
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		0 0 0 0 0 1 3 0 0 0	0 2 0 0 0 1 9 0 0 0	0 1 0 0 0 5 0 0 2 2	0 0 0 0 1 10 0 0 0 2	0 0 0 0 0 3 0 0 0	0 0 0 0 0 5 0 0 0 3	0 0 0 0 0 5 0 0 0	0 0 0 1 6 0 0 1	0 0 1 0 8 0 0 0 2	0 0 1 0 2 0 0 3 2	0 0 1 0 5 0 0 2 1	0 0 0 0 3 0 0 1 2	1 0 3 4 64 0 0 9 17	0.1 0.0 0.3 0.3 5.3 0.0 0.0 0.8 1.4
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		0 0 0 0 0 1 3 0 0 0	0 2 0 0 0 1 9 0 0 0	0 1 0 0 0 5 0 2 2 0	0 0 0 1 10 0 0 0 2	0 0 0 0 0 3 0 0 0	0 0 0 0 0 5 0 0 0 3 0	0 0 0 0 0 5 0 0 0 2	0 0 0 1 6 0 0 1 0	0 0 1 0 8 0 0 0 2 0	0 0 1 0 2 0 0 3 2 0	0 0 1 0 5 0 0 2 1 0	0 0 0 0 3 0 0 1 2	1 0 3 4 64 0 0 9 17 0	0.1 0.0 0.3 0.3 5.3 0.0 0.0 0.8 1.4 0.0

Page 38 Doc #1520788

TU April 2008

							С	ORE	NUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
1000	AMPHIPODS				_		_									
ACOR APHOX	Corophiidae Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0 1	0 1	0 4	0.0 0.3
APHOX	BIVALVES	SIZE	U	U	-	-	0	U	U	U	U	U		_	4	0.3
BAB<2	Arthritica bifurca	<2	17	9	3	0	4	5	5	4	2	6	6	11	72	6.0
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	17	9	3	0	4	5	5	4	2	6	6	11	72	6.0
BAS<5	Austrovenus stutchburyi	<5	23	18	8	2	3	8	15	13	12	7	18	17	144	12.0
BAS>5		>5	51	25	22	24	8	38	37	13	17	33	25	15	308	25.7
BAS-COND		Cond.analysis Total	0 74	1 44	0 30	0 26	0 11	1 47	0 52	0 26	0 29	0 40	0 43	0 32	2 454	0.2 37.8
BML<5	Macamona liliana	<5	2	2	1	6	3	0	1	0	3	2	1	0	21	1.8
BML5-15	madamona mana	5-15	0	0	1	0	0	0	0	0	0	0	1	1	3	0.3
BML>15		>15	1	1	2	1	1	2	5	2	4	1	1	2	23	1.9
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	3	3	4	7	4	2	6	2	7	3	3	3	47	3.9
BNH<2	Nucula hartvigiana	<2	4	3	1	1	2	1	6	5	2	1	0	6	32	2.7
BNH>2		>2 Total	38	38	7	19	27	33	63	21	6	17	43	41	353	29.4
BPA<5	Paphies australis	Total <5	42 0	41 0	8	20	29 0	34 0	69 0	26 0	8	18 0	43 0	47 0	385 0	32.1 0.0
BPA5-15	. aprilos australis	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	o	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCL	Colurostylis lemurum		0	1	1	3	0	2	1	1	1	0	1	1	12	1.0
OOL	GASTROPODS		U	Ė		J	Ů			Ė	Ė	Ů			12	1.0
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		45	8	6	12	11	23	13	8	14	20	10	15	185	15.4
	OTHER															
OAN	Anthopleura aureoradiata		2	1	3	1	0	1	5	1	0	1	2	0	17	1.4
D	POLYCHAETES			- 10	40		_					40		0.4		
PAA PAGL	Aquilaspio aucklandica		36 0	12 0	10 0	9	5 0	14 0	14 0	14 0	15 0	16 0	9	21 0	175 1	14.6 0.1
PAGL	Aglaophamus sp. Aonides oxycephala		1	0	2	5	0	0	0	0	26	5	0	1	40	3.3
PAR	Aricidea sp.		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PBOC	Pseudopolydora complex		1	2	0	0	0	1	1	0	0	1	0	1	7	0.6
PCOS	Cossura sp.		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	1	0	0	0	3	0	0	0	1	0	1	6	0.5
PHF	"Capitellidae"		18	18	2	5	10	12	8	8	2	12	13	10	118	9.8
PMD PNIC	Magelona dakini Nereidae		0 8	0 7	0 3	0	0	0 11	0 2	0 6	0 5	0 5	0 5	0 2	0 58	0.0 4.8
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	ő	0	0	0	0.0
	NON INDICATOR SPECIES															
CAMPH	Amphipods		0	6	1	0	0	2	0	0	3	2	3	5	22	1.8
CCRAB	Crabs		2	1	1	2	0	0	1	1	2	3	1	0	14	1.2
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	1	0	1	0	0	0	0	0	3	0.3
COST CSHR	Ostracods Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
COTH	Other Crustaceans		0	0	2	0	0	0	0	0	2	0	0	0	4	0.0
BOTH	Bivalves		1	0	0	0	0	0	0	0	0	0	0	0	2	0.2
GOTH	Gastropods		21	9	1	7	4	13	1	3	4	6	4	4	77	6.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	1	0	0	0	0	0	0	0	1	0	2	0.2
ONEM	Nemerteans		1	1	1	0	0	0	0	0	1	0	2	1	7	0.6
POTH	Polychaetes		0	2	0	0	0	0	1	1	0	0	0	1	5	0.4
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT OEDW	Flatworms Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
OTHER	Misc. Other		3	2	0	0	2	0	0	0	0	1	1	2	11	0.0
J	TOTAL		275	168	80	101	85	170	181	101	121	140	148	159	1730	144.2

HB October 2007

							C	ORE	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
	AMPHIPODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae BIVALVES	SIZE	3	3	1	2	2	3	4	1	5	5	3	4	36	3.0
BAB<2	Arthritica bifurca	<2	17	28	21	12	17	31	14	20	25	9	15	16	225	18.8
BAB>2	, namada sharda	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	17	28	21	12	17	31	14	20	25	9	15	16	225	18.8
BAS<5	Austrovenus stutchburyi	<5	1	2	1	2	0	4	3	1	0	0	5	3	22	1.8
BAS>5		>5	1	2	0	1	1	0	1	2	4	0	2	2	16	1.3
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
5.0.5		Total	2	4	1	3	1	4	4	3	4	0	7	7	40	3.3
BML<5 BML5-15	Macamona liliana	<5 5-15	0	0	0	0	0	0	0	1 0	2	2	0 1	1 0	6 1	0.5 0.1
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	o	0	0	0.0
BINE CONB		Total	0	0	0	0	0	0	0	1	2	2	1	1	7	0.6
BNH<2	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH>2	ŭ	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTIII .E	- , ,,,	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5 BTHL>5	Theora lubrica	<5 . 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIHL>3		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
	CUMACEANS	Total		Ů	Ů	Ů	Ů	Ů	Ů	Ů	Ť	Ů	Ů	Ü	_	0.0
CCL	Colurostylis lemurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		2	1	2	1	3	5	0	0	2	1	0	4	21	1.8
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO PAR	Aonides oxycephala Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0 1	0 1	0.0 0.1
PBOC	Pseudopolydora complex		0	1	2	1	1	0	2	1	2	1	0	0	11	0.1
PCOS	Cossura sp.		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		1	0	0	0	1	1	1	2	1	1	0	1	9	8.0
PHF	"Capitellidae"		16	18	27	15	28	21	11	16	25	25	20	17	239	19.9
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		16	12	13	17	17	20	26	16	15	16	14	12	194	16.2
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	1	0	1	2	0.2
CAMPH	NON INDICATOR SPECIES Amphipods		2	11	1	3	1	6	3	3	3	0	4	2	39	3.3
CCRAB	Crabs		2	0	3	4	4	4	0	0	3	1	3	3	27	2.3
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	4	0	0	0	0	0	0	4	0.3
COTH	Other Crustaceans		0	0	0	2	0	0	0	0	0	0	0	0	2	0.2
BOTH	Bivalves		1	0	0	0	0	1	2	0	0	0	0	0	4	0.3
GOTH	Gastropods		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM POTH	Nemerteans		1	0	0	0	0 4	0	0	0 1	1 4	1 2	0 4	1 5	4 33	0.3
OOLIG	Polychaetes Oligochaetes		1 0	0	0	0	0	0	0	0	0	0	0	0	0	2.8 0.0
OFLAT	Flatworms		0	0	0	0	1	0	0	0	0	0	0	0	1	0.0
	· .atmonno				-		0	0	0	0	0	0	0	0		0.0
OEDW	Edwardsia		Ω	()	0	()	U	U				U				
OEDW OTHER	Edwardsia Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0 1	0.0

HB April 2008

							С	ORE	NUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS		0	0	0	0	0	0	3	0	0	0	0	0	3	0.3
APHOX	Corophiidae Phoxocephalidae		0	0	1	0	1	0	0	0	0	0	0	0	2	0.3
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	7	6	1	10	13	21	2	12	2	2	8	2	86	7.2
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS<5	Austrovenus stutchburyi	Total <5	7	6 14	1 5	10 6	13 7	21 8	2 4	12 7	2 12	2	8 15	2 10	86 95	7.2 7.9
BAS>5	ridotroverido didioribaryi	>5	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	4	14	6	6	7	8	4	7	12	3	15	10	96	8.0
BML<5	Macamona liliana	<5	4	2	0	2	0	1	8	0	4	0	5	3	29	2.4
BML5-15 BML>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DIVIL COIND		Total	4	2	0	2	0	1	8	0	4	0	5	3	29	2.4
BNH<2	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA<5 BPA5-15	Paphies australis	<5 5.45	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
2.7.00.12		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	1	0	0	0	1	0	2	0.2
BTHL>5		>5	0	1	0	0	0	0	2	0	0	1	1	0	5	0.4
		Total	0	1	0	0	0	0	3	0	0	1	2	0	7	0.6
CCI	CUMACEANS		^	_												0.0
CCL	Colurostylis lemurum GASTROPODS		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES								_							
PAA PAGL	Aquilaspio aucklandica Aglaophamus sp.		1 0	2	3 0	8 0	2 0	1 0	6 0	4 0	3 0	2 0	0	10 0	44 0	3.7 0.0
PAGL	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Pseudopolydora complex		0	0	0	1	1	1	0	0	0	2	0	0	5	0.4
PCOS	Cossura sp.		0	0	0	1	0	0	0	1	1	0	0	1	4	0.3
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY PHF	Glycera sp. "Capitellidae"		1 15	0 6	1 16	0 21	0 20	0 23	0 28	2 16	0 24	0 29	0 18	0 21	4 237	0.3 19.8
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		6	4	4	6	9	5	4	11	3	4	8	7	71	5.9
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	NON INDICATOR SPECIES															
CAMPH	Amphipods		1	0	1	1	1	4	1	0	0	1	0	0	10	0.8
CCRAB CCUM	Crabs Cumaceans		0	0	0	0	2	0	1 0	2 0	1 0	1 0	2	0	9	0.8 0.0
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	ő	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	1	0	1	0	1	0	0	0	0	1	4	0.3
COTH	Other Crustaceans		0	0	0	0	0	0	4	0	0	0	0	0	4	0.3
вотн	Bivalves		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
GOTH	Gastropods		0	1	0	0	1	1	0	0	1	1	0	0	5	0.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL ONEM	Holuthurians Nemerteans		0	0	0	0 1	0 2	0	0	0	0 1	0 2	0	0	0 9	0.0 0.8
POTH	Polychaetes		0	0	0	1	1	0	0	2	0	0	0	3	7	0.6
OOLIG	Oligochaetes		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	1	0	0	0	0	1	0	0	1	0	0	3	0.3
	TOTAL		39	39	34	58	61	65	67	57	52	49	61	59	641	53.4

X October 2007

							С	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		5	3	2	2	6	2	3	3	1	1	2	0	30	2.5
	BIVALVES	SIZE														
BAB<2	Arthritica bifurca	<2	0	0	0	5	0	0	1	0	0	0	0	0	6	0.5
BAB>2		>2	0	0	0	2	0	0	0	0	0	0	0	0	2	0.2
		Total	0	0	0	7	0	0	1	0	0	0	0	0	8	0.7
BAS<5	Austrovenus stutchburyi	<5	20	47	31	36	41	43	38	27	63	31	26	23	426	35.5
BAS>5 BAS-COND		>5 Cond.analysis	7 6	21 0	14 0	22 4	20 0	5 2	7 1	19 2	17 0	30 0	17 4	25 0	204 19	17.0 1.6
BAS-COND		Total	33	68	45	62	61	50	46	48	80	61	47	48	649	54.1
BML<5	Macamona liliana	<5	0	8	3	2	3	3	4	10	6	9	7	3	58	4.8
BML5-15		5-15	1	2	1	1	0	1	1	0	1	1	1	0	10	0.8
BML>15		>15	2	2	1	2	3	1	1	2	2	1	2	3	22	1.8
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	3	12	5	5	6	5	6	12	9	11	10	6	90	7.5
BNH<2	Nucula hartvigiana	<2	11	10	7	5	9	7	9	12	0	15	3	9	97	8.1
BNH>2		>2	2	24	15	14	32	14	23	30	34	27	38	41	294	24.5
DDA < E	Danhian quatralia	Total	13	34 0	22 0	19 0	41 0	21	32 0	42 0	34 0	42 0	41 0	50 0	391	32.6
BPA<5 BPA5-15	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
	CUMACEANS															
CCL	Colurostylis lemurum		2	3	1	1	1	2	0	7	9	4	1	0	31	2.6
GCA	GASTROPODS		0	0	0	_	0	0	0	_	0	0	_	_	•	0.0
GNHE	Cominella adspera Notoacmea sp.		2	1	0	0 14	2	0 5	5	0	6	3	0	0 8	0 50	0.0 4.2
ONTIL	OTHER			_	Ů	17		J	J		Ů	J		Ů	30	7.2
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		7	16	10	18	11	13	10	15	2	21	9	14	146	12.2
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC PCOS	Pseudopolydora complex		0	2	1	0 1	0	0	1 0	1	0	0	1 2	3	9 4	0.8
PEUC	Cossura sp. Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.3 0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	1	1	1	1	3	1	3	1	1	3	3	19	1.6
PHF	"Capitellidae"		9	7	20	9	13	10	14	7	5	10	28	6	138	11.5
PMD	Magelona dakini		0	0	0	0	1	1	0	0	0	0	0	0	2	0.2
PNIC	Nereidae		2	0	0	1	1	2	5	1	0	0	2	0	14	1.2
POP													^			
	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae							0 5	0 1	0	0	0	0	0	0 7	0.0 0.6
PPAR	Paraonidae NON INDICATOR SPECIES		0	0	0	0	0	5	1	0	0	0	0	0	7	0.6
PPAR CAMPH	Paraonidae NON INDICATOR SPECIES Amphipods		0 0 5	0 1 4	0 0	0 0	0 0	18	1	0	9	19	2	0	67	5.6
PPAR CAMPH CCRAB	Paraonidae NON INDICATOR SPECIES Amphipods Crabs		0	0	0	0	0	5	1	0	0	0	0	0	7	0.6
PPAR CAMPH	Paraonidae NON INDICATOR SPECIES Amphipods		0 0 5 3	0 1 4 2	0 0 2 3	0 0 4 2	0 0 3 0	18 1	1 1 1	0 0 1	9	19 1	2 3	0 0 2	67 19	0.6 5.6 1.6
CAMPH CCRAB CCUM	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans		0 0 5 3 0	0 1 4 2 0	0 0 2 3 0	0 0 4 2 0	0 0 3 0 0	18 1 0	1 1 1 0	0 0 1 0	9 0 0	19 1 0	2 3 0	0 0 2 0	67 19 0	5.6 1.6 0.0
CAMPH CCRAB CCUM CISO	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods		0 0 5 3 0	0 1 4 2 0 0	0 0 2 3 0 0	0 0 4 2 0 0 4 0	0 0 3 0 0	18 1 0 2 2 0	1 1 1 0 0	0 1 0 0 0 1	9 0 0	19 1 0 0 0	0 2 3 0 1	0 0 2 0 0 2 0	7 67 19 0 4	5.6 1.6 0.0 0.3
CAMPH CCRAB CCUM CISO COST CSHR COTH	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans		5 3 0 0 0	0 1 4 2 0 0 2 0 6	0 0 2 3 0 0 0 0	0 0 4 2 0 0 4 0 5	3 0 0 1 0 0 8	18 1 0 2 2 0 4	1 1 1 0 0 0 1 19	0 0 1 0 0 0 1 0 6	9 0 0 0 0 0	19 1 0 0 0 0 3	2 3 0 1 0 0 26	0 0 2 0 0 0 2 0 3	7 67 19 0 4 11 1	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6
PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves		5 3 0 0 0 1 3	0 1 4 2 0 0 2 0 6 0	2 3 0 0 0 0	0 0 4 2 0 0 4 0 5	3 0 0 1 0 0 8	18 1 0 2 2 0 4 0	1 1 1 0 0 0 1 19 2	0 1 0 0 1 0 6 2	9 0 0 0 0 9	19 1 0 0 0 0 3 2	2 3 0 1 0 0 26 0	0 2 0 0 2 0 3 0	7 67 19 0 4 11 1 91	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6
PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods		0 0 5 3 0 0 0 0 1 3 1	0 1 4 2 0 0 2 0 6 0	0 0 2 3 0 0 0 0 1 0 2	0 0 4 2 0 0 4 0 5 1	0 0 3 0 0 1 0 0 8 0 4	18 1 0 2 2 0 4 0	1 1 1 0 0 0 1 19 2	0 1 0 0 1 0 1 0 6 2	9 0 0 0 0 0 9	19 1 0 0 0 0 3 2 3	2 3 0 1 0 0 26 0	0 2 0 0 2 0 3 0 3	7 67 19 0 4 11 1 91 10 26	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2
PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae		0 0 5 3 0 0 0 0 1 3 1	0 1 4 2 0 0 2 0 6 0 1	0 0 2 3 0 0 0 0 1 0 2	0 0 4 2 0 0 4 0 5 1 11 0	0 0 0 3 0 0 1 0 0 8 0 4 0	18 1 0 2 2 0 4 0 1	1 1 1 0 0 0 1 19 2 0 0	0 1 0 0 1 0 6 2 0	9 0 0 0 0 9 0	19 1 0 0 0 0 3 2 3 0	2 3 0 1 0 0 26 0 0	0 2 0 0 2 0 3 0 3	7 67 19 0 4 11 1 91 10 26 0	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0
CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH EFEZ EHOL	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians		5 3 0 0 0 1 3 1	0 1 4 2 0 0 2 0 6 0 1 0	0 0 2 3 0 0 0 0 1 0 2 0	0 0 4 2 0 0 4 0 5 1 11 0	0 0 3 0 0 1 0 0 8 0 4 0	18 1 0 2 2 0 4 0 1 0	1 1 0 0 0 1 19 2 0 0 0	0 1 0 0 1 0 6 2 0 0	9 0 0 0 0 0 0	19 1 0 0 0 0 3 2 3 0 0	2 3 0 1 0 0 26 0 0	0 2 0 0 2 0 3 0 3	7 67 19 0 4 11 1 91 10 26 0	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0
CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans		5 3 0 0 0 1 3 1 0 0	0 1 4 2 0 0 2 0 6 0 1 0 3	2 3 0 0 0 1 0 2 0 0 3	0 0 4 2 0 0 4 0 5 1 11 0 0 2	3 0 0 1 0 0 8 0 4 0 0 3	18 1 0 2 2 0 4 0 1 0 6	1 1 0 0 0 1 19 2 0 0 0 3	0 0 1 0 0 1 0 6 2 0 0 0 3	9 0 0 0 0 0 0 0	19 1 0 0 0 0 3 2 3 0 0 3	2 3 0 1 0 0 26 0 0 0	0 2 0 0 2 0 3 0 3 0 5	7 67 19 0 4 11 1 91 10 26 0 0	5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0 0.0 3.0
PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		5 3 0 0 0 1 3 1 0 0 2 4	0 1 4 2 0 0 2 0 6 0 1 0 0 3 0	2 3 0 0 0 0 1 0 2 0 0 3 2	0 0 4 2 0 0 4 0 5 1 11 0 0 2 4	3 0 0 1 0 0 8 0 4 0 0 3 0	18 1 0 2 2 0 4 0 1 0 6 2	1 1 1 0 0 0 1 19 2 0 0 0 3 5	0 0 1 0 0 1 0 6 2 0 0 0 3 3	9 0 0 0 0 0 0 0 0	19 1 0 0 0 0 3 2 3 0 0 3 3	2 3 0 1 0 0 26 0 0 0 1 6	0 2 0 0 2 0 3 0 3 0 5 8	7 67 19 0 4 11 1 1 91 10 26 0 0 36 37	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0 0.0 3.0 3.1
PPAR CAMPH CCHAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONLEM POTH OOLIG	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		5 3 0 0 0 1 3 1 0 0	0 1 4 2 0 0 2 0 6 0 1 0 0 3 0 2	2 3 0 0 0 1 0 2 0 0 3	0 0 4 2 0 0 4 0 5 1 11 0 0 2 4 2	3 0 0 1 0 0 8 0 4 0 0 3	18 1 0 2 2 0 4 0 1 0 6 2 3	1 1 0 0 0 1 19 2 0 0 0 3	0 0 1 0 0 1 0 6 2 0 0 0 3 3 3	9 0 0 0 0 0 0 0	19 1 0 0 0 0 3 2 3 0 0 3 3 2 2	2 3 0 1 0 0 26 0 0 0	0 2 0 0 2 0 3 0 3 0 5 8 0	7 67 19 0 4 11 1 10 26 0 0 36 37 22	5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0 0.0 3.1 1.8
PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		5 3 0 0 0 1 3 1 0 0 2 4 0	0 1 4 2 0 0 2 0 6 0 1 0 0 3 0	0 0 2 3 0 0 0 0 0 1 0 2 0 0 3 2 1	0 0 4 2 0 0 4 0 5 1 11 0 0 2 4	3 0 0 1 0 0 8 0 4 0 0 3 0 6	18 1 0 2 2 0 4 0 1 0 6 2	1 1 0 0 0 1 19 2 0 0 0 3 5 1	0 0 1 0 0 1 0 6 2 0 0 0 3 3	9 0 0 0 0 0 0 0 0 0 0	19 1 0 0 0 0 3 2 3 0 0 3 3	2 3 0 1 0 0 26 0 0 0 1 6 2	0 2 0 0 2 0 3 0 3 0 5 8	7 67 19 0 4 11 1 1 91 10 26 0 0 36 37	0.6 5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0 0.0 3.0 3.1
PPAR CAMPH CCRAB CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT	Paraonidae NON INDICATOR SPECIES Amphipods Crabs Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		5 3 0 0 0 1 3 1 0 0 2 4 0	0 1 4 2 0 0 2 0 6 0 1 0 3 0 2	0 0 2 3 0 0 0 0 1 0 2 0 0 3 2 1 0	0 0 4 2 0 0 4 0 5 1 11 0 0 2 4 2	3 0 0 1 0 8 0 4 0 3 0 6	18 1 0 2 2 0 4 0 1 0 6 2 3 0	1 1 0 0 0 1 1 19 2 0 0 0 3 5 1 0	0 0 1 0 0 1 0 6 2 0 0 0 3 3 3	9 0 0 0 0 0 0 0 0 0 0 0	19 1 0 0 0 0 3 2 3 0 0 3 3 2 0	2 3 0 1 0 0 26 0 0 0 1 6 2	0 2 0 0 2 0 3 0 3 0 5 8 0	7 67 19 0 4 111 1 91 10 26 0 0 36 37 22 0	5.6 1.6 0.0 0.3 0.9 0.1 7.6 0.8 2.2 0.0 0.0 3.1 1.8

X April 2008

							OPF N	IUMBE	P						
INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
AMPHIPODS		_				_		_	_	_					
Corophiidae Phoxocephalidae		0 1	0	0	0	0	0	0	0	0	0	0	0	0 7	0.0 0.6
BIVALVES	SIZE			Ů		Ť		Ů	Ů	Ť	Ů	_	Ů	,	0.0
Arthritica bifurca	<2	1	0	1	2	0	1	0	5	1	0	6	9	26	2.2
	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Total	1	0	1	2	0	1	0	5	1	0	6	9	26	2.2
Austrovenus stutchburyi	<5	6	1	8	6	3	17	13	8	3	8	20	0	93	7.8
	>5	11	23	22	23	13	6	19	8	8	26	23	16	198	16.5
	Cond.analysis	7	1	1	3	4	2	6	2	4	0	2	9	41	3.4
	Total	24	25	31	32	20	25	38	18	15	34	45	25	332	27.7
Macamona liliana	<5	4	6	5	3	5	2	4	3	5	0	1	2	40	3.3
	5-15	0 2	0	0	0	1	1	0	1	0	0	0	1	4	0.3
	>15	0	1 2	2	3	4 0	2	3	2	0	1	4 0	2	26 2	2.2 0.2
	Cond.analysis Total	6	9	7	6	10	5	7	6	5	1	5	5	72	6.0
Nucula hartvigiana	<2	3	3	0	3	2	3	1	3	1	3	3	4	29	2.4
rvacaia nartvigiana	>2	24	14	3	23	10	24	18	28	Ö	1	39	8	192	16.0
	Total	27	17	3	26	12	27	19	31	1	4	42	12	221	18.4
Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
,	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMACEANS															
Colurostylis lemurum		2	1	4	10	1	0	0	4	0	2	0	0	24	2.0
GASTROPODS															
Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Notoacmea sp.		2	3	1	1	1	1	1	1	0	5	0	3	19	1.6
OTHER		0	0	0	0	0	0	_	_	0	0	0		•	0.0
Anthopleura aureoradiata		0	U	0	U	0	U	0	0	U	U	U	0	0	0.0
POLYCHAETES Aquilaspio aucklandica		28	22	15	33	34	15	30	38	25	15	34	43	332	27.7
Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Aonides oxycephala		0	0	0	0	0	0	1	0	0	1	0	0	2	0.2
Aricidea sp.		0	0	0	0	ő	0	0	0	0	0	0	0	0	0.0
Pseudopolydora complex		0	0	1	0	0	1	1	2	1	0	0	0	6	0.5
Cossura sp.		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Glycera sp.		0	1	0	3	0	0	0	1	1	1	1	0	8	0.7
"Capitellidae"		14	9	12	6	15	12	13	16	10	7	17	20	151	12.6
Magelona dakini		0	0	0	0	1	0	0	0	0	1	0	0	2	0.2
Nereidae		1	2	0	0	1	1	1	2	4	0	3	1	16	1.3
Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Paraonidae		0	1	1	0	0	0	0	0	1	0	0	0	3	0.3
NON INDICATOR SPECIES															
Amphipods		2	2	0	1	5	0	1	3	1	0	0	1	16	1.3
Crabs		0	0	1	0	0	1	1	0	0	1	0	2	6	0.5
Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Isopods		0	1	1 0	0 1	0 2	1	1	0	0 1	0	0	0	4	0.3
Ostracods Shrimps/Myoids			-	_	0	0	-		1		-	0	1	6 0	0.5
Shrimps/Mysids Other Crustaceans		0 5	0 4	0 5	5	1	0	0 5	8	0 2	0	18	0 7	65	0.0 5.4
Bivalves		0	0	0	0	0	1	0	1	0	0	0	0	2	0.2
Gastropods		0	3	1	3	1	5	0	2	0	1	0	4	20	1.7
Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Holuthurians		ő	0	0	0	0	0	3	1	ő	0	0	0	4	0.3
Nemerteans		1	4	1	5	1	2	1	6	3	0	2	1	27	2.3
Polychaetes		2	3	2	1	2	4	1	2	0	0	9	6	32	2.7
Oligochaetes		0	0	0	0	0	0	1	3	ő	0	1	2	7	0.6
Flatworms		0	0	0	0	ő	0	0	0	ő	0	0	0	0	0.0
Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Misc. Other		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
		116	108	87	135	107	108	125	153	71	75	185	142	1412	117.7

WI July 2007

							С	ORF	NUMBE	-R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
	AMPHIPODS															
ACOR	Corophiidae		0	0	0 5	0	0 4	0	0 4	2	0 4	0	0	0	2 40	0.2
APHOX	Phoxocephalidae BIVALVES	SIZE	1	2	5	2	4	2	4	5	4	5	3	3	40	3.3
BAB<2	Arthritica bifurca	<2	5	2	0	8	5	6	8	10	11	7	4	11	77	6.4
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	5	2	0	8	5	6	8	10	11	7	4	11	77	6.4
BAS<5	Austrovenus stutchburyi	<5	4	8	2	6	7	8	5	10	13	5	7	8	83	6.9
BAS>5		>5	8	4	2	4	9	5	17	7	20	14	17	11	118	9.8
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	2	0	2	0.2
BML<5	Macamona liliana	Total <5	12 6	12 4	7	10 5	16 8	13 9	22	17 2	33 1	19 3	26 5	19 4	203 56	16.9 4.7
BML5-15	Macamona IIIIana	5-15	1	2	2	0	2	1	0	0	1	0	0	1	10	0.8
BML>15		>15	1	1	6	2	1	Ö	3	1	5	2	1	3	26	2.2
BML-COND		Cond.analysis		0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	8	7	15	7	11	10	5	3	7	5	6	8	92	7.7
BNH<2	Nucula hartvigiana	<2	2	6	0	3	4	6	9	11	7	9	15	2	74	6.2
BNH>2		>2	22	27	5	10	38	10	48	30	34	24	44	35	327	27.3
		Total	24	33	5	13	42	16	57	41	41	33	59	37	401	33.4
BPA<5	Paphies australis	<5 5.45	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15 BPA-COND		>15 Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BI A-COND		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	1	0	0	0	0	0	0	0	0	0	1	2	0.2
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	1	0	0	0	0	0	0	0	0	0	1	2	0.2
	CUMACEANS															
CCL	Colurostylis lemurum		0	1	0	1	0	0	5	1	2	3	2	0	15	1.3
	GASTROPODS			_		-				-					_	
GCA	Cominella adspera		0	0	0	0	0	0	0 7	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp. OTHER		1	2	5	0	6	6		6	9	6	16	10	74	6.2
OAN	Anthopleura aureoradiata		0	1	6	1	0	1	1	4	4	1	6	1	26	2.2
37.11	POLYCHAETES		Ť	·	Ť		Ů				·		Ů			
PAA	Aquilaspio aucklandica		1	18	20	25	10	7	19	18	9	11	11	11	160	13.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	8	15	5	0	3	1	5	1	2	0	3	43	3.6
PBOC	Pseudopolydora complex		0	0	0	2	1	0	0	2	1	1	0	0	7	0.6
PCOS PEUC	Cossura sp.		0	0	0	1 0	0	0	1 0	0	0	0	0	0	2	0.2
PGE	Euchone sp. Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
PGLY	Glycera sp.		1	1	0	2	1	1	1	0	1	1	0	0	9	0.8
PHF	"Capitellidae"		17	20	39	43	24	29	15	31	28	14	20	20	300	25.0
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		0	1	0	2	2	2	1	8	3	4	2	5	30	2.5
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		1	0	4	3	0	0	1	0	0	1	1	0	11	0.9
CAMPIL	NON INDICATOR SPECIES		1	0	2		2	7	2	2	-	_	7	_	40	
CAMPH CCRAB	Amphipods Crabs		3	0	2	0	3 0	7 0	3 2	3 1	5 1	9	7 1	0	42 10	3.5 0.8
CCRAB	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	1	0	0	0	0	0	0	0	1	1	0	3	0.3
COST	Ostracods		0	0	1	1	0	0	0	1	0	1	1	0	5	0.4
CSHR	Shrimps/Mysids		0	0	2	1	1	0	0	0	0	0	0	0	4	0.3
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
вотн	Bivalves		0	2	4	0	1	0	0	0	0	2	1	2	12	1.0
GOTH	Gastropods		1	0	2	2	2	4	3	3	12	6	10	8	53	4.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM POTH	Nemerteans Polychaetes		0	1 5	1 7	0	2	1 1	1 5	0 13	0 6	1 7	0 21	0 7	7 75	0.6 6.3
1 0 111	i diyunacies			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OOLIG	Oligochaetes															0.0
OOLIG OFLAT	Oligochaetes Flatworms		0				0		1	0	0	0	0	0		0.1
OOLIG OFLAT OEDW	Oligochaetes Flatworms <i>Edwardsia</i>		0	0	0	0	0	0	1 1	0 0	0	0 0	0	0	1	0.1 0.1
OFLAT	Flatworms		0	0	0	0		0							1	

WI October 2007

							С	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
	AMPHIPODS				_		_									
ACOR APHOX	Corophiidae		1	0 4	0 4	0	0 3	0 6	0	0	0	0	0 5	0 2	1 30	0.1 2.5
APHUX	Phoxocephalidae BIVALVES	SIZE	1	4	4		3	0	1	U	U		5		30	2.5
BAB<2	Arthritica bifurca	<2	16	6	3	5	3	13	2	15	2	5	7	2	79	6.6
BAB>2	, united bilared	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	16	6	3	5	3	13	2	15	2	5	7	2	79	6.6
BAS<5	Austrovenus stutchburyi	<5	0	2	2	3	8	5	7	5	11	12	5	7	67	5.6
BAS>5		>5	3	13	0	3	10	10	10	5	10	9	9	12	94	7.8
BAS-COND		Cond.analysis	0	0	0	0	0	0	2	0	0	0	0	0	2	0.2
DML 45	Manager Illiana	Total	3 8	15 6	2	6	18 8	15 5	19 0	10 10	21 5	21 3	14 3	19 6	163 64	13.6 5.3
BML<5 BML5-15	Macamona liliana	<5 5-15	1	3	1	1	1	1	2	10	0	3	0	3	17	1.4
BML>15		>15	1	3	4	0	2	3	2	1	1	2	1	1	21	1.8
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	10	12	9	7	11	9	4	12	6	8	4	10	102	8.5
BNH<2	Nucula hartvigiana	<2	10	4	19	10	8	17	3	10	12	11	14	4	122	10.2
BNH>2		>2	17	10	29	40	25	31	42	44	32	29	42	36	377	31.4
	5 // //	Total	27	14	48	50	33	48	45	54	44	40	56	40	499	41.6
BPA<5 BPA5-15	Paphies australis	<5 5-15	0 1	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15 BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	1 0	0.1 0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
5.7.00.15		Total	1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
BTHL<5	Theora lubrica	<5	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
	CUMACEANS		_							_	_		_			
CCL	Colurostylis lemurum		2	1	0	1	0	0	0	2	2	0	2	1	11	0.9
GCA	GASTROPODS Cominella adspera		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
GNHE	Notoacmea sp.		6	4	6	7	7	7	11	9	11	9	9	7	93	7.8
OIVIL	OTHER		-							Ť		Ť	Ť			7.0
OAN	Anthopleura aureoradiata		0	3	5	0	2	1	3	0	1	17	1	2	35	2.9
	POLYCHAETES															
PAA	Aquilaspio aucklandica		11	12	8	11	11	21	11	7	20	20	17	17	166	13.8
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR PBOC	Aricidea sp. Pseudopolydora complex		4 0	5 2	8	7 0	5 0	0	4	3 0	2	2	3 0	1	44 4	3.7 0.3
PCOS	Cossura sp.		0	0	0	0	1	1	1	0	0	0	0	0	3	0.3
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		2	1	0	1	1	1	0	2	0	2	0	0	10	0.8
PHF	"Capitellidae"		46	41	21	24	28	23	23	20	25	36	21	16	324	27.0
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		2	5	3	6	5	4	8	1	5	7	3	6	55	4.6
POP PPAR	Orbinia papillosa Paraonidae		0 2	0	0	0	0	0	0	0 1	0	0	0 3	0	0 9	0.0 0.8
FAR	NON INDICATOR SPECIES			U	U	U	-		_	Ė	U		3	Ů	3	0.8
CAMPH	Amphipods		6	7	7	3	6	4	4	7	0	3	2	2	51	4.3
CCRAB	Crabs		3	1	4	3	3	1	2	1	4	2	0	0	24	2.0
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		2	1	0	0	0	1	0	0	0	2	1	0	7	0.6
COST	Ostracods		1	0	1	0	0	1	0	3	0	0	0	0	6	0.5
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BOTH GOTH	Bivalves		1	1	5	0	1	1 2	1	0 7	0	1	2	1 7	14	1.2
EFEZ	Gastropods Fellaster zealandiae		8 0	0	5 0	6 0	2	0	4 0	0	8	5 0	7 0	0	65 0	5.4 0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	1	0	0	0	1	0.0
ONEM	Nemerteans		0	1	1	2	2	0	0	3	0	1	2	0	12	1.0
POTH	Polychaetes		9	1	4	2	2	4	4	1	0	5	5	1	38	3.2
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		1	0	4	0	3	1	1	0	0	6	0	4	20	1.7
	TOTAL		165	143	148	143	149	166	149	158	152	194	164	139	1870	155.8

WI January 2008

							C	ORE N	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOR	AMPHIPODS Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	1	1	2	0	1	1	2	1	1	0	0	10	0.8
	BIVALVES	SIZE												-		
BAB<2	Arthritica bifurca	<2	6	1	10	12	2	6	6	8	0	24	12	1	88	7.3
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	6	1	10	12	2	6	6	8	0	24	12	1	88	7.3
BAS<5	Austrovenus stutchburyi	<5	27	26	19	22	22	25	21	24	21	39	23	11	280	23.3
BAS>5		>5	9	9	2	7	10	19	10	19	7	14	8	25	139	11.6
BAS-COND		Cond.analysis	3	1	0	0	0	0	2	0	1	0	0	0	7	0.6
BML<5	Macamona liliana	Total <5	39	36 6	21	29 8	32	44 7	33	43 5	29 4	53 3	31 1	36 1	426 43	35.5
BML5-15	масаттопа шапа	5-15	1	1	1	1	0	1	1	1	2	0	1	0	43 10	3.6 0.8
BML>15		>15	0	1	2	2	3	1	1	1	1	1	3	2	18	1.5
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0.0
52 00.13		Total	4	8	3	11	5	9	5	7	7	4	5	3	71	5.9
BNH<2	Nucula hartvigiana	<2	7	30	12	10	9	12	3	13	2	11	2	2	113	9.4
BNH>2	J	>2	3	33	7	23	17	15	14	19	14	16	9	7	177	14.8
		Total	10	63	19	33	26	27	17	32	16	27	11	9	290	24.2
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
001	CUMACEANS		_	4			4			_		_				
CCL	Colurostylis lemurum		0	1	0	0	1	0	0	0	0	0	0	0	2	0.2
GCA	GASTROPODS Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	_	0.0
GNHE	Notoacmea sp.		3	11	3	1	4	2	23	7	5	16	12	4	0 91	0.0 7.6
GIVITL	OTHER		3			-	4			,	j	10	12	4	31	7.0
OAN	Anthopleura aureoradiata		7	3	6	1	3	3	2	1	3	1	1	5	36	3.0
	POLYCHAETES					·	_	-			Ť			-		5.0
PAA	Aquilaspio aucklandica		13	33	16	8	8	11	16	6	13	11	4	4	143	11.9
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		1	2	3	0	0	0	0	1	0	0	0	2	9	0.8
PAR	Aricidea sp.		1	4	7	2	4	2	6	5	2	2	4	5	44	3.7
PBOC	Pseudopolydora complex		1	1	1	2	0	0	0	0	0	1	0	1	7	0.6
PCOS	Cossura sp.		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
PGE	Goniada sp.		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PGLY	Glycera sp.		0	1	1	1	2	0	1	2	1	1	2	0	12	1.0
PHF	"Capitellidae"		35	32	35	26	21	21	12	24	24	32	26	19	307	25.6
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		2	0	6	4	1	4	2	3	1	5	7	2	37	3.1
POP PPAR	Orbinia papillosa Paraonidae		0 6	0 1	0	0	0	0	0	0	0 2	0	0 1	0	0 11	0.0 0.9
FFAR	NON INDICATOR SPECIES		0	_	0	_	_	U	Ů	_		Ů	Ė	U	- 11	0.9
CAMPH	Amphipods		1	1	0	2	2	0	2	1	0	1	8	0	18	1.5
-			2	3	4	0	0	2	9	1	2	4	4	1	32	2.7
CCRAB	Crabs			-		0	0	0	0	0	0	0	0	0	0	0.0
CCRAB CCUM	Crabs Cumaceans			0	0					-		-				
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			0					0	0	0	0	0	0 1	0	0 2	0.0 0.2
CCUM CISO	Cumaceans Isopods		0	0	0	0	0									
CCUM CISO COST CSHR	Cumaceans Isopods Ostracods		0 0 0	0 0	0 0	0 0	0 1	0	0	0	0	0	1	0	2	0.2
CCUM CISO COST CSHR COTH BOTH	Cumaceans Isopods Ostracods Shrimps/Mysids		0 0 0 1	0 0 0 0 5	0 0 0	0 0 0 0 2	0 1 1 0 2	0 0	0 2 0 2	0 1 0 0	0 1 0 0	0 1 0	1 0 0 1	0 0 0	2 7	0.2 0.6
CCUM CISO COST CSHR COTH BOTH GOTH	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods		0 0 0 1	0 0 0 5 6	0 0 0 5 1	0 0 0 0 2 4	0 1 1 0 2 4	0 0 1 1	0 2 0 2 6	0 1 0 0 2	0 1 0 0 2	0 1 0 0 5	1 0 0 1 4	0 0 0 0 2	2 7 1	0.2 0.6 0.1
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae		0 0 0 1 0 1 1	0 0 0 5 6 0	0 0 0 0 5 1	0 0 0 0 2 4 0	0 1 1 0 2 4 0	0 0 1 1 1 0	0 2 0 2 6 0	0 1 0 0 2 0	0 1 0 0 2 0	0 1 0 0 5	1 0 0 1 4 0	0 0 0 0 2	2 7 1 19 38 0	0.2 0.6 0.1 1.6 3.2 0.0
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians		0 0 0 1 0 1 1 0 0	0 0 0 5 6 0	0 0 0 5 1 0	0 0 0 0 2 4 0	0 1 1 0 2 4 0	0 0 1 1 1 0	0 2 0 2 6 0	0 1 0 0 2 0	0 1 0 0 2 0	0 1 0 0 5 0	1 0 0 1 4 0	0 0 0 0 2 0	2 7 1 19 38 0	0.2 0.6 0.1 1.6 3.2 0.0
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans		0 0 0 1 0 1 1 0 0 6	0 0 0 5 6 0 4	0 0 0 0 5 1 0	0 0 0 0 2 4 0 0	0 1 1 0 2 4 0 0	0 0 1 1 1 0 0	0 2 0 2 6 0 0	0 1 0 0 2 0 0	0 1 0 0 2 0 0	0 1 0 0 5 0 0	1 0 0 1 4 0 0	0 0 0 0 2 0 0	2 7 1 19 38 0 0 20	0.2 0.6 0.1 1.6 3.2 0.0 0.0
CCUM CISO COST CSHR COTH BOTH EFEZ EHOL ONEM POTH	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes		0 0 0 1 0 1 1 0 0 6	0 0 0 5 6 0 4 7	0 0 0 5 1 0 2 3	0 0 0 0 2 4 0 0	0 1 1 0 2 4 0 0 0 3	0 0 1 1 1 0 0 0	0 2 0 2 6 0 0 1	0 1 0 0 2 0 0 1	0 1 0 0 2 0 0 0	0 1 0 0 5 0 0 2	1 0 0 1 4 0 0 2	0 0 0 0 2 0 0 2	2 7 1 19 38 0 0 20 23	0.2 0.6 0.1 1.6 3.2 0.0 0.0 1.7 1.9
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		0 0 0 1 0 1 1 0 0 6 1	0 0 0 5 6 0 4 7	0 0 0 5 1 0 2 3	0 0 0 0 2 4 0 0 0	0 1 1 0 2 4 0 0 0 0 3	0 0 1 1 1 0 0 0 3	0 2 0 2 6 0 0 1 1	0 1 0 0 2 0 0 1 1	0 1 0 0 2 0 0 0 1	0 1 0 0 5 0 0 2 0	1 0 0 1 4 0 0 2 1 0	0 0 0 0 2 0 0 2 1	2 7 1 19 38 0 0 20 23 0	0.2 0.6 0.1 1.6 3.2 0.0 0.0 1.7 1.9 0.0
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG OFLAT	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes Flatworms		0 0 0 1 0 1 1 0 0 6 1	0 0 0 5 6 0 4 7 0	0 0 0 5 1 0 0 2 3 0	0 0 0 0 2 4 0 0 0	0 1 1 0 2 4 0 0 0 3 0	0 0 1 1 1 0 0 0 3 0	0 2 0 2 6 0 0 1 1 0	0 1 0 0 2 0 0 1 1 0	0 1 0 0 2 0 0 0 1	0 1 0 0 5 0 0 2 0 0	1 0 0 1 4 0 0 2 1 0	0 0 0 0 2 0 0 2 1 0	2 7 1 19 38 0 0 20 23 0	0.2 0.6 0.1 1.6 3.2 0.0 0.0 1.7 1.9 0.0 0.0
CCUM CISO COST CSHR COTH BOTH GOTH EFEZ EHOL ONEM POTH OOLIG	Cumaceans Isopods Ostracods Shrimps/Mysids Other Crustaceans Bivalves Gastropods Fellaster zealandiae Holuthurians Nemerteans Polychaetes Oligochaetes		0 0 0 1 0 1 1 0 0 6 1	0 0 0 5 6 0 4 7	0 0 0 5 1 0 2 3	0 0 0 0 2 4 0 0 0	0 1 1 0 2 4 0 0 0 0 3	0 0 1 1 1 0 0 0 3	0 2 0 2 6 0 0 1 1	0 1 0 0 2 0 0 1 1	0 1 0 0 2 0 0 0 1	0 1 0 0 5 0 0 2 0	1 0 0 1 4 0 0 2 1 0	0 0 0 0 2 0 0 2 1	2 7 1 19 38 0 0 20 23 0	0.2 0.6 0.1 1.6 3.2 0.0 0.0 1.7 1.9 0.0

OB July 2007

							С	ORE	NUMBE	ER.						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
ACOD	AMPHIPODS		_			_						_	_			0.0
ACOR APHOX	Corophiidae Phoxocephalidae		0 3	0 3	0 6	0 6	0 7	0 13	0 8	0 5	0 10	0 12	0 5	0 11	0 89	0.0 7.4
	BIVALVES	SIZE								-						
BAB<2	Arthritica bifurca	<2	2	1	3	0	3	5	3	1	1	0	1	1	21	1.8
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	2	1	3	0	3	5	3	1	1	0	1	1	21	1.8
BAS<5 BAS>5	Austrovenus stutchburyi	<5 >5	1 0	0	0	0	0	0	0	0	1 0	0	0	0	2	0.2
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
DAO-COND		Total	1	0	0	0	0	0	0	ő	1	0	0	0	2	0.2
BML<5	Macamona liliana	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML5-15		5-15	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
BML>15		>15	0	1	0	0	0	2	0	0	1	0	0	0	4	0.3
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH<2	Alternative to and distance	Total	0	1	0	0	0	2	0	0	1	0	1	0	5	0.4
BNH>2	Nucula hartvigiana	<2 >2	0	0	0	0	0	0	0	1 0	0	0	0	0	1 0	0.1 0.0
DIVI I/Z		Total	0	0	0	0	0	0	0	1	0	0	0	0	1	0.0
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15	•	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DT		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5 . 5	1	0	0	0	0	0	0	1	0	1	0	1	4	0.3
BTHL>5		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0 1	0 4	0.0 0.3
	CUMACEANS	Total	'	Ů	Ů	Ů	Ů	Ů	Ü		Ü	_	Ů		-	0.0
CCL	Colurostylis lemurum		4	0	0	1	3	3	1	1	1	4	0	1	19	1.6
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAN	OTHER										_		_			
OAN	Anthopleura aureoradiata POLYCHAETES		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAA	Aquilaspio aucklandica		6	1	5	9	6	4	1	7	6	3	10	6	64	5.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	1	0	2	0	0	0	0	0	1	0	0	4	0.3
PBOC	Pseudopolydora complex		0	0	0	0	0	0	0	0	1	2	0	0	3	0.3
PCOS	Cossura sp.		10	13	8	11	19	12	22	17	14	19	22	24	191	15.9
PEUC PGE	Euchone sp. Goniada sp.		1	1 0	0	0	0	1 0	0	0	0	0	0	0	3 0	0.3 0.0
PGLY	Glycera sp.		0	0	0	0	0	0	0	1	0	0	0	0	1	0.0
PHF	"Capitellidae"		32	24	23	25	32	29	40	35	24	31	20	22	337	28.1
PMD	Magelona dakini		1	0	0	0	0	0	0	1	0	1	0	0	3	0.3
PNIC	Nereidae		4	6	4	7	11	7	8	6	7	6	7	6	79	6.6
POP	Orbinia papillosa		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
PPAR	Paraonidae		0	1	3	3	3	2	1	2	6	3	1	4	29	2.4
CAMPH	NON INDICATOR SPECIES		4	2	1	1	2	1	6	4	2	2	4	4	24	2.0
CAMPH CCRAB	Amphipods Crabs		0	2	0	1	3 2	1 2	6 0	2	2 0	2	6	3	34 19	2.8 1.6
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		6	3	4	3	5	1	6	2	2	1	1	3	37	3.1
COST	Ostracods		0	2	0	2	0	0	0	0	1	2	0	0	7	0.6
CSHR	Shrimps/Mysids		0	1	0	0	0	4	1	0	0	1	1	1	9	0.8
COTH	Other Crustaceans		0	0	1	0	0	4	0	0	0	0	1	0	6	0.5
BOTH	Bivalves		0	0	1	7	1	2	3	0	1 -	3	3	0	21	1.8
GOTH	Gastropods		0	0	0	3	2	3	3	3	7 0	5 0	5	3	34	2.8
EFEZ EHOL	Fellaster zealandiae Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
ONEM	Nemerteans		1	0	1	0	0	0	1	0	0	1	2	0	6	0.0
POTH	Polychaetes		3	3	3	3	4	1	3	2	2	3	4	0	31	2.6
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	1	0	0	0	0	1	4	2	1	0	1	10	0.8
	TOTAL		79	66	64	84	101	96	108	95	89	103	94	91	1070	89.2

OB October 2007

							C	ORE	NUMBE	ER .						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
400D	AMPHIPODS				_							_				
ACOR APHOX	Corophiidae Phoxocephalidae		0 5	0 4	0 8	0 5	0 1	0 1	0 13	0 20	0 5	0 15	0 4	0 7	0 88	0.0 7.3
AFTIOX	BIVALVES	SIZE	3	4	۰	J	Ė	,	13	20	j	13	4	,	00	7.5
BAB<2	Arthritica bifurca	<2	1	0	5	7	1	3	2	2	3	2	2	0	28	2.3
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	0	5	7	1	3	2	2	3	2	2	0	28	2.3
BAS<5	Austrovenus stutchburyi	<5	1	2	2	0	0	2	0	1	1	0	0	0	9	8.0
BAS>5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS-COND		Cond.analysis	0	0 2	0	0	0	0 2	0	0	0	0	0	0	0 9	0.0
BML<5	Macamona liliana	Total <5	1	2	1	3	0 1	1	0	2	1	0 4	1	0	17	0.8 1.4
BML5-15	wacamona ililana	5-15	0	0	0	0	Ö	1	0	0	Ö	0	0	0	1	0.1
BML>15		>15	0	0	0	0	1	0	0	0	ō	0	1	0	2	0.2
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	2	1	3	2	2	0	2	1	4	2	0	20	1.7
BNH<2	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
BNH>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
BPA<5	Paphies australis	<5	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
BPA5-15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA-COND		Cond.analysis Total	0	0	0	0	0	0	0	0	0 1	0	0	0	0 1	0.0 0.1
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5	THEOIA IUDIICA	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BITIE 0		Total	0	0	0	0	0	0	0	0	ő	0	0	0	0	0.0
	CUMACEANS			_		_									-	
CCL	Colurostylis lemurum		0	2	1	2	0	0	1	0	1	3	1	0	11	0.9
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
DAA	POLYCHAETES		-	_	_	_	_	-		_	40	-		-		4.0
PAA PAGL	Aquilaspio aucklandica Aglaophamus sp.		5 0	3 0	2	3 0	0	1 0	2 0	6 0	13 0	4 0	6 0	5 0	50 0	4.2 0.0
PAO	Aonides oxycephala		0	7	0	0	0	0	0	0	0	0	0	0	7	0.6
PAR	Aricidea sp.		0	0	0	2	0	0	0	1	0	0	1	1	5	0.4
PBOC	Pseudopolydora complex		0	0	1	0	1	0	1	0	ő	0	0	1	4	0.3
PCOS	Cossura sp.		8	8	3	15	6	12	14	24	11	7	6	7	121	10.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		1	1	1	0	0	0	1	1	0	0	0	1	6	0.5
PHF	"Capitellidae"		20	45	32	42	35	32	39	28	40	40	30	24	407	33.9
PMD	Magelona dakini		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
PNIC	Nereidae		7	8	1	7	3	7	11	4	3	4	3	6	64	5.3
POP PPAR	Orbinia papillosa Paraonidae		0 3	0 9	0 5	0 1	0	0 6	0 4	0	0 5	0	0	0 4	0 46	0.0 3.8
FFAR	NON INDICATOR SPECIES		3	9		-	Ů	0	-	3	,		٦	4	40	3.0
CAMPH	Amphipods		1	3	0	0	3	1	5	0	2	4	7	6	32	2.7
CCRAB	Crabs		0	1	1	0	1	1	3	1	3	1	4	2	18	1.5
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		2	2	0	0	1	1	1	0	0	0	0	1	8	0.7
COST	Ostracods		1	1	1	1	1	0	0	0	0	0	0	1	6	0.5
CSHR	Shrimps/Mysids		1	0	0	0	1	1	0	8	2	0	0	0	13	1.1
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		0	5	1	10	3	5	5	11	4	4	12	10	70	5.8
GOTH	Gastropods		8	2	4	1	0	1	2	2	5	2	3	6	36	3.0
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL ONEM	Holuthurians		0	0	0	0	0	0 1	0 1	0	0 2	0	0	0	0	0.0
POTH	Nemerteans Polychaetes		3	3	12	4	3	3	9	6	3	5	3	3	9 57	0.8 4.8
			J									0		0		0.0
OOLIG	•		n	Λ	ρ	Λ .	- 0	(1)	(1)						n	
OOLIG OFLAT	Oligochaetes		0	0	0	0	0	0	0 1	0	0		0		0 2	
OFLAT	Oligochaetes Flatworms		0 0 0	0 0	0	0 0	0	0	1 0	0	0	0	0 0	1 0	2	0.2
	Oligochaetes		0	0	0	0	0	0	1	0	0	0	0	1		

OB January 2008

							С	ORE N	NUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
	AMPHIPODS				_								-			
ACOR	Corophiidae		1	0	0	0	0 4	9	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae BIVALVES	SIZE	12	6	5	7	4	9	11	10	5	5	8	11	93	7.8
BAB<2	Arthritica bifurca	<2 <2	0	0	0	2	0	1	0	2	4	0	0	0	9	0.8
BAB>2	7 II di Hidoa Bilaroa	>2	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
		Total	0	0	0	2	0	1	0	2	4	0	1	0	10	0.8
BAS<5	Austrovenus stutchburyi	<5	0	0	0	1	1	0	0	0	0	0	0	0	2	0.2
BAS>5	•	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	1	1	0	0	0	0	0	0	0	2	0.2
BML<5	Macamona liliana	<5	0	1	1	1	1	0	0	1	0	4	1	2	12	1.0
BML5-15		5-15	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BML>15		>15	0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
BML-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
		Total	0	2	1	1	1	0	0	1	0	5	1	4	16	1.3
BNH<2	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH>2		>2	0	0	0	0	0	2	0	0	0	0	0	0	2	0.2
BPA<5	Danhina quatrelle	Total	0	0	0	0	0	2	0	0	0	0	0	0	2	0.2
BPA5-15	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15 BPA>15		5-15 >15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
P! Y-OOND		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5	Tricora labrica	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		1	1	0	1	0	1	0	2	0	0	3	1	10	0.8
	GASTROPODS															
GCA	Cominella glandiforms		1	1	0	0	0	0	0	0	0	0	0	1	3	0.3
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OTHER															
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POLYCHAETES															
PAA	Aquilaspio aucklandica		15	23	8	5	21	15	17	17	9	20	22	21	193	16.1
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		3	1	0	1	0	1	2	3	0	0	1	0	12	1.0
PBOC PCOS	Pseudopolydora complex		0 6	1 12	9	9	1 9	0 6	0 16	0 13	0 9	0 8	0 8	0 16	2 121	0.2 10.1
PEUC	Cossura sp. Euchone sp.		0	6	3	1	1	0	0	1	1	0	0	0	13	1.1
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	2	1	2	1	0	1	1	2	2	ő	12	1.0
PHF	"Capitellidae"		38	38	40	39	48	31	28	28	39	42	31	26	428	35.7
PMD	Magelona dakini		0	1	0	0	0	0	0	0	0	0	0	1	2	0.2
PNIC	Nereidae		3	2	2	8	3	4	4	2	5	4	3	4	44	3.7
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		1	1	0	4	4	0	0	3	0	0	2	2	17	1.4
	NON INDICATOR SPECIES															
CAMPH	Amphipods		5	21	0	6	8	17	12	9	6	7	17	17	125	10.4
CCRAB	Crabs		3	0	0	2	0	1	4	1	1	0	3	2	17	1.4
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		1	3	1	1	0	0	2	3	1	2	0	1	15	1.3
COST	Ostracods		1	2	0	0	0	1	1	1	2	1	0	0	9	0.8
CSHR	Shrimps/Mysids		0	1	0	0	1	0	1	0	0	0	6	0	9	0.8
COTH	Other Crustaceans		0	0	4	0	0	0	0	0	0	0	0	0	4	0.3
BOTH	Bivalves		2	0	1	0	0	1	3	0	1	1	0	0	9	0.8
GOTH	Gastropods		1	1	2	0	3	1	3	0	1	1	2	2	17	1.4
EFEZ EHOL	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Holuthurians		0	0 2	0 2	0 2	0	0	0 2	0 1	0	0 2	0	0	0	0.0
	Nomortoans			_			1				1				13	1.1
ONEM	Nemerteans Polychaetes			F	0	ာ		A	2	6	2	- 4	2	6	40	
ONEM POTH	Polychaetes		5	5	9	3	4	4	2	6	2	1	2	6	49 0	4.1
ONEM POTH OOLIG	Polychaetes Oligochaetes		5 0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM POTH OOLIG OFLAT	Polychaetes Oligochaetes Flatworms		5 0 0	0 0	0	0 0	0 0	0	0	0 0	0	0 0	0	0 0	0 0	0.0 0.0
ONEM POTH OOLIG	Polychaetes Oligochaetes		5 0	0	0	0	0	0	0	0	0	0	0	0	0	0.0

OB April 2008

							C	ORE	IUMBE	R						
	INDICATOR SPECIES		1	2	3	4	5	6	7	8	9	10	11	12	TOTAL	MEAN
1000	AMPHIPODS		0		_		_									
ACOR APHOX	Corophiidae Phoxocephalidae		0 3	0 4	0	0	0	0 1	0	0 3	0	0 2	0	0	0 19	0.0 1.6
APHOX	BIVALVES	SIZE	3	4		U	3	'	U	3	U		U		19	1.0
BAB<2	Arthritica bifurca	<2	1	1	0	2	3	0	0	1	0	1	0	0	9	0.8
BAB>2		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	1	0	2	3	0	0	1	0	1	0	0	9	0.8
BAS<5	Austrovenus stutchburyi	<5	1	0	0	0	1	0	0	0	0	0	0	0	2	0.2
BAS>5		>5	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BAS-COND		Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BML<5	Macamona liliana	Total <5	0	0	0	0	3	0	0	0	0 1	0	0	0	3 5	0.3 0.4
BML5-15	Macamona Illiana	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.4
BML>15		>15	1	0	1	1	1	0	1	0	0	0	0	0	5	0.4
BML-COND		Cond.analysis	0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
ĺ		Total	1	0	1	1	4	1	1	1	1	0	0	0	11	0.9
BNH<2	Nucula hartvigiana	<2	0	3	0	0	1	0	0	0	0	0	0	0	4	0.3
BNH>2		>2	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
		Total	0	4	0	0	1	0	0	0	0	0	0	0	5	0.4
BPA<5	Paphies australis	<5 5.45	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA5-15 BPA>15		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA>15 BPA-COND		>15 Cond.analysis	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0 0.0
BPA-COND		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL<5	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL>5	THOUSE REPLIES	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CUMACEANS															
CCL	Colurostylis lemurum		5	2	5	2	1	2	0	1	2	0	1	1	22	1.8
	GASTROPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OAN	OTHER Anthonious auroassists		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
OAN	Anthopleura aureoradiata POLYCHAETES		U	U	0	U	0	U	U	_	U	U	U	U	_	0.1
PAA	Aquilaspio aucklandica		11	14	16	7	5	4	8	11	9	6	4	1	96	8.0
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
PBOC	Pseudopolydora complex		1	0	2	1	0	2	0	1	1	0	0	1	9	8.0
PCOS	Cossura sp.		13	5	8	4	9	9	5	8	10	15	7	4	97	8.1
PEUC	Euchone sp.		0	0	0	1	1	1	1	1	0	1	0	1	7	0.6
PGE	Goniada sp.		1	1	0	0	0	1	0	0	1	0	0	0	4	0.3
PGLY PHF	Glycera sp. "Capitellidae"		0 20	0 22	1 39	0 17	0 32	1 27	0 21	0 19	0 35	0 27	0 16	1 12	3 287	0.3 23.9
PMD	Magelona dakini		1	0	0	0	0	0	1	0	0	1	0	0	3	0.3
PNIC	Nereidae Nereidae		3	2	1	1	3	4	2	3	5	5	4	5	38	3.2
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		2	1	2	2	6	1	2	1	6	1	3	0	27	2.3
	NON INDICATOR SPECIES															
CAMPH	Amphipods		2	1	0	0	0	1	0	0	0	1	0	1	6	0.5
CCRAB	Crabs		1	0	0	0	0	0	1	0	0	2	2	1	7	0.6
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO COST	Isopods Ostracods		0 3	0	1	0	3	1 1	0	0	0 1	1 3	0 1	0 2	6 13	0.5 1.1
COST	Ostracods Shrimps/Mysids		0	1	0	0	0	0	0	0	0	0	0	0	13	1.1 0.1
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
BOTH	Bivalves		0	0	0	0	0	1	0	0	0	0	1	1	3	0.3
GOTH	Gastropods		1	1	3	0	0	1	0	0	2	0	1	0	9	0.8
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		1	2	0	0	0	0	0	2	0	2	0	0	7	0.6
			3	3	6	4	4	3	3	2	5	2	2	1	38	3.2
POTH	Polychaetes															
POTH OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH OOLIG OFLAT	Oligochaetes Flatworms		0	0 0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH OOLIG	Oligochaetes		0	0	_		-									

Appendix 3 – Dry weight shell-hash

Southern Firth of Thames

Whaingaroa Harbour

July 2007

Site	Sample No.	Shell hash weight (g)
MI	1	201.3
	2	455.7
	3	354.1
	4	395.8
	5	532.1
	6	522.2
	7	339.9
	8	532.0
	9	408.1
	10	453.8
	11	648.5
	12	451.8
KB	1	211.1
	2	273.4
	3	193.9
	4	234.7
	5	230.7
	6	225.4
	7	124.9
	8	150.8
	9	112.6
	10	176.2
	11	254.8
	12	183.5

Site	Sample No.	Shell hash weight (g)
WI	1	50.1
	2	131.3
	3	190.6
	4	197.3
	5	86.6
	6	56.8
	7	133.0
	8	152.8
	9	111.5
	10	147.8
	11	98.4
	12	85.7
ОВ	1	164.0
	2	63.9
	3	42.8
	4	67.4
	5	63.1
	6	54.8
	7	47.3
	8	35.1
	9	50.5
	10	127.9
	11	63.4
	12	46.0

Whaingaroa Harbour

October 2007

Site	Sample No.	Shell hash weight (g)	Site	Sample No.	Shell hash weight (g)
KA	1	86.0	TU	1	87.5
	2	52.4		2	99.9
	3	85.8		3	99.5
	4	70.3		4	102.2
	5	51.1		5	79.9
	6	72.5		6	109.2
	7	0.3		7	63.5
	8	64.4		8	41.5
	9	116.7		9	66.9
	10	57.9		10	166.5
	11	48.6		11	112.6
	12	83.0		12	87.5
GC	1	661.3	НВ	1	100.2
	2	662.8		2	78.1
	3	737.6		3	86.2
	4	1336.4		4	79.1
	5	585.2		5	171.5
	6	672.9		6	235.3
	7	590.7		7	214.7
	8	611.3		8	187.7
	9	1139.5		9	135.8
	10	861.4		10	136.6
	11	534.6		11	171.6
	12	465.3		12	301.7
TP	1	52.1	X	1	160.6
	2	95.7		2	134.7
	3	47.2		3	158.9
	4	86.5		4	695.2
	5	35.5		5	196.3
	6	35.9		6	226.6
	7	28.7		7	200.8
	8	142.6		8	103.6
	9	161.2		9	113.8
	10	222.9		10	265.2
	11	196.1		11	220.3
	12	36.5		12	159.1
МІ	1	361.6	WI	1	228.5
••••	2	602.3	•••	2	86.9
	3	527.9		3	165.8
	4	295.1		4	68.9
	5	602.8		5	69.2
	6	319.2		6	96.8
	7	167.5		7	60.0
	8	505.5		8	109.8
	9	631.4		9	78.8
	10	449.6		10	150.6
		520.5			
	11			11	67.9
KB	12 1	195.4	ОВ	12 1	97.5
NΒ		203.0	ОВ		82.7
	2	180.4		2	64.0
	3	140.5		3	67.3
	4	266.7		4	59.4
	5	146.5		5	60.9
	6	173.8		6	60.7
	7	199.1		7	26.8
	8	178.6		8	48.0
	9	176.2		9	47.4
	10	158.2		10	50.7
	11	257.8		11	32.4
	12	169.6		12	37.9

Whaingaroa Harbour

January 2008

Site	Sample No.	Shell hash weight (g)
MI	1	209.3
	2	679.2
	3	236.0
	4	662.4
	5	435.3
	6	187.9
	7	584.4
	8	237.1
	9	455.5
	10	549.5
	11	280.0
	12	133.2
KB	1	191.8
	2	285.7
	3	118.9
	4	255.0
	5	171.4
	6	174.8
	7	141.2
	8	191.4
	9	206.4
	10	181.1
	11	137.9
	12	125.0

Site	Sample No.	Shell hash weight (g)
WI	1	231.3
	2	154.3
	3	223.9
	4	76.1
	5	107.9
	6	57.6
	7	70.8
	8	159.3
	9	111.3
	10	114.6
	11	109.8
	12	37.9
ОВ	1	83.7
	2	87.8
	3	72.7
	4	50.3
	5	69.1
	6	53.4
	7	35.8
	8	45.7
	9	50.3
	10	50.6
	11	70.0
	12	37.0

Whaingaroa Harbour

April 2008

Site	Sample No.	Shell hash weight (g)		Site	Sample No.	Shell hash weight (g)
KA	1	95.7		TU	1	286.4
	2	82.4			2	108.1
	3	49.6			3	85.8
	4	102.4			4	87.8
	5	110.5			5	67.8
	6	108.0			6	132.9
	7	81.9			7	68.5
	8	63.1			8	76.7
	9	46.8			9	58.8
	10	135.5			10	256.5
	11	66.8			11	152.9
	12	98.7			12	96.1
GC	1	354.2		НВ	1	216.0
	2	376.3			2	118.0
	3	777.2			3	162.7
	4	554.1			4	132.3
	5	488.6			5	134.7
	6	533.8			6	192.3
	7	578.0			7	145.5
	8	717.0			8	294.5
	9	1387.8			9	166.0
	10	1544.3			10	161.4
	11	439.4			11	331.7
	12	419.2			12	259.0
TP	1	44.4		X	1	148.6
	2	61.3			2	213.9
	3	165.7			3	318
	4	75.3			4	130.3
	5	56.2			5	140.8
	6	35.5			6	121.2
	7	137.5			7	86.6
	8	43.6			8	164.1
	9	434.1			9	406.1
	10	306.3			10	173.4
	11	126.7			11	158.8
	12	71.5			12	268.7
MI	1	242.8	,	WI	1	0.0
	2	480.2			2	0.0
	3	544.3			3	0.0
	4	541.8			4	0.0
	5	447.6			5	0.0
	6	254.6			6	0.0
	7	247.8			7	0.0
	8	248.0			8	0.0
	9	538.4			9	0.0
	10	600.8			10	0.0
	11	164.6			11	0.0
KB	12 1	201.9	-	ОВ	12 1	0.0 95.7
ND		147.3	•	ОВ		
	2	253.2 151.8			2 3	64.4
	3	151.8				122.7
	4	180.4			4	60.0
	5	153.0			5	50.7
	6	209.5			6	49.1 47.4
	7	109.9			7	47.4 46.0
	8	230.1			8	46.9
	9	233.2			9	80.5
	10 11	188.6 155.1			10 11	30.5
	11 12	155.1			11 12	46.5
	12	161.8			12	40.4

Appendix 4 – Sediment organic carbon and nitrogen content

Southern Firth of Thames

Whaingaroa Harbour

July 2007

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
MI	0.24	72.8	0.05
	0.2	75.1	0.12
	0.26	68.6	0.05
	0.52	59.5	0.09
	0.19	66.6	< 0.05
KB	0.31	62.3	0.1
	0.36	58.4	0.06
	0.36	59.6	0.08
	0.27	66.1	0.25
	0.52	55.5	0.08

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
WI	0.45	61.8	0.07
	0.45	61.8	0.07
	0.55	62	0.24
	0.49	58.1	0.07
	1.62	67.5	0.09
ОВ	0.95	48.2	0.12
	1.36	33.5	0.18
	1.03	47.8	0.17
	1.07	43.8	0.14
	1.21	42.4	0.15

October 2007

	Total Organic Carbon		
	g/100g dry wt	as rcvd	g/100g dry wt
KA	0.4	63	< 0.068
	0.35	63	< 0.063
	0.99	59	0.21
	0.33	63	0.057
	0.29	69	0.051
GC	0.47	64	0.095
	0.27	66	0.061
	0.25	65	0.057
	0.25	62	0.063
	0.37	61	0.072
TP	0.16	71	< 0.050
	0.27	71	< 0.050
	0.15	69	< 0.050
	0.14	71	< 0.050
	0.17	71	< 0.050
MI	0.2	68	< 0.050
	0.35	58	0.08
	0.27	65	< 0.050
	0.2	72	0.05
	0.2	71	< 0.050
KB	1.1	35	0.16
	0.77	47	0.11
	0.88	43	0.15
	0.89	43	0.15
	1	39	0.16

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
TU	0.46	73	0.086
	0.6	71	0.069
	0.38	73	0.065
	0.33	77	0.065
	0.37	73	0.075
НВ	0.77	59	0.11
	0.71	62	0.11
	0.82	61	0.12
	0.74	60	0.11
	0.68	64	0.1
Х	0.44	70	0.077
	0.45	69	0.093
	0.41	72	0.092
	0.71	70	0.12
	0.52	71	0.089
WI	0.42	67	0.065
	0.39	69	0.061
	0.39	67	0.06
	0.42	68	0.064
	0.35	70	< 0.050
ОВ	0.59	65	0.092
	0.73	62	0.11
	0.89	61	0.13
	0.79	60	0.11
	0.67	63	0.091

January 2008

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
MI	0.26	69	0.057
	0.23	67	0.059
	0.18	74	< 0.050
	0.17	72	< 0.050
	0.21	63	< 0.050
KB	0.43	57	0.075
	0.46	55	0.077
	0.42	56	0.071
	0.36	62	0.062
	0.45	58	0.078

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
WI	0.53	70	0.11
	0.4	70	0.073
	0.52	70	0.095
	0.49	69	0.097
	0.5	70	0.094
ОВ	0.76	61	0.096
	0.68	61	0.093
	0.68	62	0.1
	0.67	59	0.1
	0.76	61	0.1

Whaingaroa Harbour

April 2008

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt			ganic Carbon 00g dry wt	Dry Matter g/10 as rcvd	Og Total Nitrogen g/100g dry wt
KA	0.32	63	0.084	TU		0.45	73	0.074
	0.27	65	0.086			0.45	70	0.067
	0.23	64	0.067			0.41	73	0.059
	0.24	67	0.075			0.46	69	0.07
	0.25	65	0.064			0.32	74	0.052
GC	0.39	58	0.098	НВ		0.58	60	0.1
	0.33	58	0.088			0.54	59	0.093
	0.41	62	0.097			0.56	57	0.094
	0.41	63	0.1			0.63	62	0.099
	0.33	61	0.083			0.54	57	0.093
TP	0.22	75	0.066	X		0.55	69	0.072
	0.16	67	< 0.050			0.37	73	0.058
	0.14	64	< 0.050			0.41	73	0.059
	0.13	69	< 0.050			0.41	75	0.051
	0.16	65	< 0.050			0.55	72	0.07
MI	0.22	66	0.058	WI	Not	Sampled	Not Sample	d Not Sampled
	0.25	64	0.057		Not	Sampled	Not Sample	d Not Sampled
	0.22	69	0.058		Not	Sampled	Not Sample	d Not Sampled
	0.24	64	0.062		Not	Sampled	Not Sample	d Not Sampled
	0.23	66	0.063		Not	Sampled	Not Sample	d Not Sampled
KB	0.38	60	0.083	ОВ		0.58	64	0.077
	0.39	57	0.083			0.56	64	0.072
	0.38	64	0.086			0.63	64	0.08
	0.35	62	0.075			0.63	64	0.076
	0.34	58	0.077			0.59	64	0.078

Appendix 5 – Sediment photosynthetic pigment concentration

Southern Firth of Thames

Whaingaroa Harbour

July 2007

	Chlorophyll- <i>a</i> mg.kg ⁻¹	Pheophytin mg.kg ⁻¹
MI	5.80	2.60
	7.20	2.90
	7.10	2.50
	6.80	2.60
	5.80	3.10
KB	7.50	6.60
	6.50	5.30
	6.30	4.80
	5.90	5.30
	6.60	6.90

	Chlorophyll- <i>a</i> mg.g ⁻¹	Pheophytin mg.g ⁻¹
WI	8.50	5.00
	7.40	4.80
	7.50	5.30
	9.00	5.30
	7.50	5.20
ОВ	7.90	5.50
	7.60	6.20
	8.40	5.40
	7.40	5.60
	7.10	5.80

October 2007

	Chlorophyll-a	Pheophytin
	mg.kg ⁻¹	mg.kg ⁻¹
KA	10.00	3.40
	9.20	3.60
	8.30	4.30
	9.50	4.30
	10.00	1.90
GC	12.00	< 0.1
	13.00	< 0.1
	9.10	< 0.1
	20.00	< 0.1
	19.00	1.70
TP	4.00	0.30
	2.70	< 0.1
	13.00	3.80
	7.30	< 0.1
	17.00	2.00
MI	7.40	0.90
	10.00	2.20
	11.00	2.10
	13.00	1.20
	7.10	2.10
КВ	14.00	5.40
	41.00	24.00
	32.00	25.00
	7.80	0.30
	30.00	29.00

-	Chlorophyll-a	Pheophytin
	mg.kg ⁻¹	mg.kg ⁻¹
TU	13.00	3.10
	33.00	8.90
	21.00	5.10
	19.00	3.60
	19.00	4.50
НВ	14.00	5.20
	12.00	4.80
	19.00	5.40
	17.00	6.40
	14.00	3.00
Х	27.00	10.0
	18.00	8.2
	21.00	6.9
	15.00	4.6
	16.00	2.1
WI	26.00	2.30
	17.00	2.00
	23.00	2.80
	18.00	2.10
	22.00	2.80
ОВ	22.00	8.30
	22.00	6.90
	22.00	7.00
	16.00	7.20
	19.00	6.50

January 2008

	Chlorophyll-a	Pheophytin
	mg.kg ⁻¹	mg.kg ⁻¹
MI	8.20	0.20
	9.90	< 0.1
	9.00	0.60
	8.10	< 0.1
	8.00	0.10
KB	7.50	2.60
	11.00	< 0.1
	8.90	0.50
	18.00	9.90
	14.00	3.10

	Chlorophyll-a	Pheophytin
	mg.kg ⁻¹	mg.kg ⁻¹
WI	17.00	7.30
	17.00	7.50
	17.00	6.60
	16.00	5.80
	18.00	4.20
ОВ	14.00	6.80
	14.00	4.00
	18.00	< 0.1
	14.00	4.80
	12.00	5.70

Southern Firth of Thames

April 2008

	Chlorophyll-a	Pheophytin
	mg.kg ⁻¹	mg.kg ⁻¹
KA	6.70	3.20
	6.30	2.50
	7.40	1.40
	4.60	5.30
	6.40	6.20
GC	19.50	2.60
	12.40	3.40
	17.30	3.60
	27.30	4.20
	13.40	4.00
TP	1.10	2.00
	9.40	2.20
	9.70	1.30
	8.00	3.40
	2.80	1.20
MI	5.90	2.40
	7.60	5.80
	10.50	2.40
	10.20	2.70
	10.30	2.80
KB	11.40	8.50
	4.30	5.50
	10.90	5.00
	12.40	9.00
	12.40	8.00

Whaingaroa Harbour

	Chlorophyll-a	Pheophytin
	mg.kg ⁻¹	mg.kg ⁻¹
TU	20.40	8.20
	15.70	4.30
	19.70	4.20
	18.20	3.30
	20.10	2.90
НВ	8.70	2.90
	14.40	2.90
	10.60	4.90
	17.20	2.50
	10.20	3.50
Х	16.70	2.80
	22.70	0.80
	19.10	6.70
	14.70	3.10
	16.50	2.70
WI	Not sampled	Not sampled
	Not sampled	Not sampled
ОВ	7.80	4.90
	9.30	2.10
	9.50	5.60
	9.50	5.60
	8.60	5.90

Page 58 Doc #1520788

Appendix 6 – QA/QC procedures

Each sample is sieved and preserved in the field, returned to the laboratory, and analysed for indicator species. All non-indicator species are classified into major taxonomic groups (amphipods, bivalves, crabs, cumaceans, gastropods, isopods, ostracods, polychaetes, shrimps and "other") and enumerated. The laboratory analysis of samples for benthic communities involves two processes:

- Sample sorting.
- Species identification and enumeration.

A subsequent step is the input and storage of data into corporate databases. There are also quality control procedures in place for this step.

Quality control of sample sorting⁵ is essential to ensure the value of all subsequent steps in the sample analysis process. Re-sorting of samples is employed for quality control of sorting. As a minimum re-sorting effort, a random selection of 16% (2 out of 12 samples) of the samples from each site is completely re-sorted. Re-sorting is conducted by an experienced sorter other than the original sorter.

Percent sorting efficiency is:

Minimum acceptable sorting efficiency is 95%. If sorting efficiency is greater than 95%, no action is required. Sorting efficiencies below 95% require re-sorting of all samples from the site concerned. Note that samples that are completely re-sorted after falling below 95% are assumed to have achieved 95% efficiency. Any organisms found in the re-sort should be added to the original sorted sample for later identification and enumeration. Once all quality control criteria for sample sorting have been met, the sample debris (shell-hash) can be dried and weighed.

The goal of species identification and enumeration is species or species group level identification and an accurate count of each indicator species, and identification and an accurate count of remaining taxonomic groups. Quality control is provided by complete re-identification and re-enumeration of a random selection of 16% of the samples from each site. This includes examination of any material left-over from each sorted sample. Re-identification and re-enumeration is conducted by an experienced identifier other than the original identifier.

Percent identification and enumeration efficiency is:

Note that the number of errors is based upon the difference between the original (correctly identified) count and the re-count.

Minimum acceptable identification and enumeration efficiency is 90%. If identification and enumeration efficiency is greater than 90%, no action is required. Identification and enumeration efficiencies below 90% require that the type of error (see below) is identified and samples re-analysed for this error. Laboratory data sheets should be amended accordingly.

Doc # 1520788 Page 59

5

⁵ Sorting is the separation of biological material from sediment, shell-hash, and other non-living biological material retained by a 500 µm sieve.

The following are examples of potential errors in species identification and enumeration:

- Counting errors (e.g., counting 11 individuals of a species/species group as 10 or 12; including dead bivalves in a count; including headless polychaete parts in a count).
- Identification errors (e.g., identifying species X as species Y).
- Unrecorded species errors (e.g., not identifying species X when it is present).
- Recording errors (e.g., recording species X as species Y on a data sheet).
- Specimens overlooked in the original analysis (e.g., missed organisms in the left-over sample).

A standard processing form is used for tracking each sample. It includes the details of each sample, the name of the sorter and identifier responsible, time required for sorting and species identification and enumeration, and any additional comments. These need to be completed at each stage of the laboratory analysis of all the samples.

Page 60 Doc #1520788