Literature Survey Of Nitrogen And Phosphorus Loss From Land To Water In The Waikato Region

www.waikatoregion.govt.nz ISSN 2230-4355 (Print) ISSN 2230-4363 (Online)

Prepared by: Geoff Mercer, Stewart Ledgard, Ian Power (Agresearch)

For: Waikato Regional Council Private Bag 3038 Waikato Mail Centre HAMILTON 3240

27 June 2011

Approved for release by: Bala Tikkisetty

Date July 2011

Disclaimer

This technical report has been prepared for the use of Waikato Regional Council as a reference document and as such does not constitute Council's policy.

Council requests that if excerpts or inferences are drawn from this document for further use by individuals or organisations, due care should be taken to ensure that the appropriate context has been preserved, and is accurately reflected and referenced in any subsequent spoken or written communication.

While Waikato Regional Council has exercised all reasonable skill and care in controlling the contents of this report, Council accepts no liability in contract, tort or otherwise, for any loss, damage, injury or expense (whether direct, indirect or consequential) arising out of the provision of this information or its use by you or any other party.

Farming, Food and Health. First [™] Te Ahuwhenua, Te Kai me te Whai Ora. Tuatahi

Literature survey of nitrogen and phosphorus loss from land to water in the Waikato region

Report for Waikato Regional Council

June 2011

New Zealand's science. New Zealand's future.

Literature survey of nitrogen and phosphorus loss from land to water in the Waikato region

Prepared for Waikato Regional Council

June 2011

Geoff Mercer, Stewart Ledgard, Ian Power

DISCLAIMER: While all reasonable endeavour has been made to ensure the accuracy of the investigations and the information contained in this report, AgResearch expressly disclaims any and all liabilities contingent or otherwise that may arise from the use of the information.

COPYRIGHT: All rights are reserved worldwide. No part of this publication may be copied, photocopied, reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AgResearch Ltd.

Table of Contents

1.	Exe	ecutive Summary	1			
2.	Introduction					
3.	Me	4				
	3.1	Published Research	4			
	3.2	Ongoing Research	5			
4.	Exi	sting Research Knowledge Relevant to the Waikato Region	6			
	4.1	Sources and Pathways	6			
	4.2	Effluent Management	7			
	4.3	Retired Areas	7			
	4.4	Fertiliser Management	8			
	4.5	Inhibitors	9			
	4.6	Animal Related Issues	9			
	4.7	Land Management	10			
	4.8	Cropping and Feeds	11			
5.	Re	search at Whatawhata	13			
6.	On	going Research of Relevance in the Waikato Region	15			
7.	Ga	ps in Knowledge and Research	17			
8.	Ge	neral recommendations for future research	19			
	8.1	Phosphorus	19			
	8.2	Nitrogen	19			
	8.3	Phosphorus, nitrogen and systems research				
9.	Ар	pendices				

1. Executive Summary

This report provides a summary of published literature on nitrogen (N) and phosphorus (P) losses from land to water that was carried out in the Waikato region or of relevance to it. It was based on a literature search of science publication databases, selected publications not available to web searches and AgResearch reports. An end-note library of references is provided with the report. In addition, a summary is provided of relevant on-going research projects and programmes such as from the Ministry of Science and Innovation (MSI), MAF Sustainable Farming Fund (SFF), University of Waikato and PhD studies.

Research was grouped according to Sources and Pathways, and Mitigations. Studies on key N and P loss processes and sources were summarised, recognising the significant contribution of critical source areas, erosion and sediment losses, and animal excreta. A tabulated summary of individual research papers, their objectives, key findings and the magnitude of reduction of N and P losses from management or mitigation practices are presented. These covered effluent management, retired areas (wetlands, riparian management, fencing waterways, filter strips), fertiliser management (fertiliser use, fertiliser form, optimal soil P), nitrogen inhibitors, animal related issues (pugging, stock management, restricted grazing), land management (irrigation, sorbents, pasture, races, retention dams) and crop use (crop management, supplementary feeds).

Areas where further research is required are defined. These are:

Phosphorus:

Research is required on defining critical source areas (CSAs) on farms and catchments; this is ongoing in a new large MSI programme. Better knowledge of sediment and P losses in Waikato hill country is desirable as is a better understanding of benefits of mitigations to reduce these losses.

Nitrogen:

Knowledge of attenuation of N from below the root zone to surface waters in different soils in the Waikato is required and this could be addressed in part in a new MSI programme. While research has identified the significance of urine-N leaching in winter, recent research indicates that summer and autumn losses may have been underestimated. Better knowledge of this is needed as this has implications for the use of mitigations and their timing.

Winter and summer forage cropping is increasing and more data is required to predict N leaching from these crops and the effectiveness of mitigation practices.

In view of the relatively high N fertiliser use, information on the reduction of N leaching from reduced strategic N use is warranted in conjunction with effects on production and economics.

Phosphorus, Nitrogen and Systems Research

N and P losses to waterways from farm dairy effluent (FDE) can be significant on poorly drained soils but there is limited data on this in the Waikato region and on the benefits of management and mitigation practices.

A number of mitigations have had moderate evaluation using lysimeter and small plot trials but limited testing in grazing systems. More whole system research is needed to evaluate optimisation of mitigations. This would increase adoption by farmers, particularly if it is associated with wider evaluation of economic implications and other environmental emissions (e.g. greenhouse gases).

2. Introduction

Nitrogen (N) and phosphorus (P) loss from agricultural land in the Waikato region has long been recognised as a potential threat to lake and river ecosystems. Studies for the Waikato Regional Council (WRC) have previously estimated that N and P losses from land have increased over time with intensification of land use and conversion of land from plantation forestry to pastoral agriculture. Therefore, reducing N and P losses from agriculture in future would be desirable. If this is to be achieved it is important to understand the processes that lead to nutrient losses and potential effects of management or mitigation practices. Similarly, it is important to be aware of areas where research knowledge is poor. This report is a summary of published and current research on N and P loss processes and mitigation opportunities by reputable institutions, such as universities and Crown Research Institutes (CRIs) applicable to the Waikato region. Included is:

- Research on loss of N to groundwater and surface waterways in the Waikato and Bay of Plenty (BOP) regions
- Research on loss of P to groundwater, streams, rivers and lakes in New Zealand

• Comment on research limitations and areas where more research is required However, this literature survey is not exhaustive. It is possible that some published and ongoing research may not have been found despite best efforts.

3. **Methods**

This project included a search of both published literature and research currently in progress.

Published Research 3.1

Scientific literature databases searched were:

- Biosis •
- **CAB** Abstracts
- Scopus

•

•

Searches were limited to research published from 1990 to the present day.

Searches were undertaken using a range of keywords in various combinations. Keywords included:

Nitrogen •

Leaching

Runoff

- Process
- Phosphorus
- Pathwav •
- Loss Taupo .

These searches included selected authors of known reputation in the area of nutrient loss to water-bodies. These were:

- **David Hamilton** •
- Stewart Ledgard •
- **Richard McDowell**
- **Ross Monaghan** •

- Louis Schipper .
- Mark Shepherd **Christine Smith** •
- **Roland Stenger** •

Searches of selected publications were undertaken where it was known they were unlikely to be available in on-line journal databases. The main one of these was:

Proceedings of the Workshop of the Fertiliser and Lime Research Centre • (Massey University)

In addition, published articles were included from bibliographies of reports written by AgResearch.

Relevant publications were grouped by topic and are listed with title, reference, study objective, location and findings in Appendix 9.1. Findings relevant to each topic have been summarised.

- Pukekohe
 - Coromandel
 - Hauraki
- King Country •
- Bay of Plenty
- Zealand
- Waikato

•

An end-note library of references, and where possible, abstracts have been compiled. However, it is not exhaustive. References not found using scientific literature databases are not in the library. These include references found in the Proceedings of the Workshop of the Fertiliser and Lime Research Centre (Massey University) and those found in bibliographies of reports written by AgResearch.

3.2 Ongoing Research

On-line searches were undertaken to identify background information of current research projects. Websites of the following funding agencies were searched:

- Foundation for Research Science and Technology (FRST)
- Ministry of Science and Innovation (MSI)
- MAF Sustainable Farming Fund (SFF)

Local research organisations known to be working in this research area were contacted for additional information, including:

- University of Waikato
- Lincoln Ventures

A brief summary of the objectives of ongoing research programmes and contact details are listed with contact details of the programme leader. This includes several studies being undertaken by PhD candidates at the University of Waikato.

4. Existing Research Knowledge Relevant to the Waikato Region

A substantial body of literature and research describes nitrogen (N) and phosphorus (P) sources and pathways from agricultural land to water-bodies and the effectiveness of mitigation strategies to reduce discharge of N and P to waterways. These are summarised in the following sections and in Appendix 9.1 under relevant sub-headings.

4.1 Sources and Pathways

Critical Source Areas

Identification of critical source areas (CSAs) is a useful strategy to define the main contributors to P losses and in particular for mitigation of P losses. This involves targeting high risk areas such as lanes, gateways, troughs, effluent ponds and barns, etc. Of the six references identified, only one reported work undertaken in the Waikato. Different approaches were discussed. Empirical approaches are useful for indentifying CSAs but research on more process based approaches may improve understanding and predictions in future.

N and P Processes

Ten papers were identified covering processes underpinning N loss to waterways. These processes included soil erosion, urine deposition and denitrification, They concluded that processes must be considered in relation to the whole farm system.

Animal treading can enhance gaseous N losses by denitrification. However, N cycling via animal excreta, particularly urine, is the major determinant of N losses. Urine deposition increases pasture yield for 2 - 3 harvests, increases plant N and K concentrations and induces a prolonged reduction of N fixation by clover.

Eight papers considered P loss processes. Erosion from landslides can represent a significant localised contributor to nutrient loss but losses of nutrients, particularly P associated with sediment movement in overland flow induced by animal treading are of more general importance. In coarse low anion storage capacity pumice soils, P leaching may be a significant P loss process.

4.2 Effluent Management

Effluent management focused on farm dairy effluent (FDE) management but there were also studies on municipal sewage and domestic waste application to soil. N and P were equally studied. Research focused on the impacts of effluent, sewage and or domestic waste on risk of N and P losses. Findings suggested that increasing application rates and long term loading above agronomic requirements increases N and P build up in the soil and the associated risk of N and P losses. Risk of loss increases in soils of sloping land and artificial/impeded drainage. Management of FDE (e.g. depth, rate and timing of application) is critical on these soils to minimise losses.

4.3 Retired Areas

Wetlands

Research on wetlands in the Waikato and BOP regions focused on: 1) quantifying the area required for a wetland to be effective at removing N and P; 2) P processes within wetlands; 3) evaluation of the use of P sorbents in wetlands; 4) evaluation of the effectiveness of constructed wetlands and watercress at removing N and P; 5) floating wetlands.

The conclusions were that wetlands can be very effective at removing N and P from water but must be constructed well and bypass flow minimised. Effective constructive wetlands were estimated to require 2 -5% of a catchment area. In the Taupo area natural wetlands occupying 5% of a catchment removed 11-19% of N in runoff. Diversion of water through a water-cress bed was estimated to remove 33% of N at low flows and 16% at high flows. The use of sorbents added to wetlands can aid P removal.

Riparian Management

Research on riparian management has been widespread throughout the New Zealand. The studies outlined the effectiveness of various riparian systems at removing N and P from overland flow. Up to 95% of nitrate-N entering the riparian zone can be removed although long term studies show that the effectiveness of some riparian systems can decrease over time. The effectiveness of P removal can be variable and riparian protection and ongoing management of riparian areas is recommended.

Fencing Waterways

The only study located in the Waikato focusing on fencing of waterways found that the provision of water troughs did not deter cattle from accessing waterways. Other studies undertaken in Otago and Southland focused on deer wallows as hot-spots for P loss and management recommendations to reduce impacts on stream water quality.

Filter Strips

Four studies were undertaken looking at pasture filter strips and addition of P sorbents in the Waikato and BOP regions with the main focus on P. Reduced flow weighted N & P loss was observed from riparian strips receiving channelized runoff from pasture. Alum / polyacrylamide application increased retention by up to 40% but effectiveness diminished on drying out.

4.4 Fertiliser Management

Fertiliser Use

There are a small range of relevant studies undertaken in the Waikato and BOP regions on N fertiliser use.

Two studies focused on cropping systems in the Pukekohe region. These studies investigated the effects of differing land uses (dairy, winter greens, winter potatoes), timing of cropping (winter v summer crops) and N fertiliser use on N losses. These studies and others with forage crops for grazing all showed high rates of N leaching associated with the effects of soil cultivation as well as loss arising from use of high N fertiliser rates.

The remainder of the studies focused on grazed pastoral systems. These studies covered N leaching potential in new and existing farm systems, winter application on N in hill country, impacts of the rate of N application in dairy farmlets on N leaching and groundwater contamination, and a review on the state of knowledge relating to fertiliser advice to identify areas to improve N fertiliser recommendations for pasture.

Research generally showed increased risk of direct leaching of fertiliser-N applied in winter and overall, an exponential increase in N leaching associated with increasing animal N inputs.

Fertiliser Form

No studies were found in the Waikato or BOP regions relating to impacts of fertiliser form on N loss and only one on impacts of fertiliser form on P loss. However, several South Island studies were found relating to P loss. All of these studies concluded that soluble P fertilisers (e.g. Superphosphate) pose a greater risk of P loss than slowly available P fertilisers (e.g. RPR). However with good management and appropriate mitigation strategies the differences in P loss can be minimised. Mitigation strategies included avoiding application when overland flow is likely.

Optimal Soil Test P

Only one study was found specifically relating to the Waikato. This was a survey on soil quality including Olsen P status and highlighted high soil P levels under cropping and dairying. Other studies in the South Island and the Hawkes Bay region focused mainly on the impacts of soil P status on P loss. These studies covered a range of soils and showed that P loss was lower from high retentive volcanic soils and that as Olsen P soil test increases then the risk of soil P loss increases also. They illustrated the benefit of not exceeding the optimum soil P status for plant growth to reduce P losses.

4.5 Inhibitors

Several studies have been undertaken on the effectiveness of Inhibitors on reducing N losses.

The urease inhibitor Agrotain can reduce ammonia losses from urea fertiliser or urine by over 60%.

Research on nitrification inhibitors covered a range of areas including effectiveness of DCD in reducing leaching losses, the effectiveness of liquid versus granular forms, timing of applications to obtain the best benefit (i.e. critical period), direct application to ruminants, impacts of soil type and rainfall and use on annual forage crops. Findings indicated that two applications are optimal with an autumn and winter application, and that a reduction in N loss of up to 60% can be achieved. One study of a dairy grazing system near Rotorua on pumice soils showed an average reduction in N leaching of 20%.

4.6 Animal Related Issues

Pugging

There have been several studies conducted in the Waikato looking at pugging and these showed increased N loss by denitrification. However, only one study in the Waikato and several in the lower South Island examined the impacts of pugging on P loss. These indicated that N and P losses increase with increased pugging and that sediment bound P is a major source of P loss. Mitigation strategies to reduce N and P loss due to pugging are to restrict or avoid grazing when pastures are liable to pugging damage.

Stock Management

Fifteen studies located in the Waikato region focused on N and five addressed P. N leaching losses were lower from sheep and deer grazing, than from cattle grazing under similar intake systems.

Grazing can also reduce infiltration rate in soil and increase runoff and nutrient loads to waterways post-grazing. Over-grazing damages soil. Nutrient loss generally increases with increased stocking rate, particularly when grazing forage crops.

Use of wintering pads/stand-off pads can reduce nitrate leaching by up to 50%. Urinations on paddock are reduced as excreta N from the pad is captured and applied more evenly to pasture (preferably at a time of low risk of loss).

Stocking rate should be considered with other factors such as strategic destocking when assessing environmental impacts. Increased stocking rates and N inputs are generally associated with reduced N efficiency and increased N losses.

Restricted Grazing or Controlled duration grazing

Two studies relating to restricted grazing in the Waikato and BOP regions showed reduced N leaching by 30-50%. Several other studies occurred in the Manawatu and the lower South Island. The general conclusion was that using restricted grazing practices during winter (and in autumn in mole drained soils) can decrease N and P losses by up to 50%, but that pasture growth may decline, possibly due to less excreta deposition.

4.7 Land Management

Irrigation

Only one study was found addressing N loss in relation to irrigation using Taupo soil. It concluded that leaching is more related to pasture use efficiency than to annual drainage. Three other South Island studies focused on P loss. Losses as dissolved reactive phosphorus (DRP) were small compared to Total P and the major loss pathway is particulate P, much of which is in organic form. Irrigation increased utilisation of P but increased P movement to depth in the soil profile. To reduce P losses, irrigation scheduling should be managed to reduce overland flow.

N and P Sorbents

Several studies were found focusing on the use of P sorbents to reduce P loss to waterways. Three studies were conducted in each of the Waikato and BOP regions. The studies covered a wide range of methods of use and types of P sorbent use including P socks, backfilling mole and tile drains, and incorporation in water bodies. The range of P sorbents studied included alum, tephra and various industrial by-products, e.g. slag. Some industrial by-products were found to be toxic to plants. The general consensus was that P sorbents can be very successful at removing P from overland flow and streams but that good management is critical.

One study investigated the use of wood chip filter as an N sorbent and concluded that to be effective a filter 1.2% - 2.4% of the catchment area would be required.

Pasture Species

One study investigated the effect of pasture species on N uptake and leaching. Grasses with larger roots systems are associated with increased interception and reduced N losses. Research and development of new cultivars is ongoing.

Races and Lanes

Studies in the South Island associated races, laneways and crossings with increased loss of P to waterways.

Retention Dams and Drains

Best management practice specifications are available for small retention dams to retain P. Drains may act as either a sink or a source of N & P depending on conditions and/or management. One study showed that up to 55% of DRP may be removed over a distance of 150 metres.

4.8 Cropping and Feeds

Cropping (Forage crop management and Arable / horticulture)

Five relevant references were found relating to cropping in the region.

Three references focused on the impacts of crop rotation on N loss and two on impacts of DCD. The use of cover crops was also studied. Potatoes, Maize and forage crops were studied.

Findings centred on the importance of the use of cover crops within the rotation and their role in N uptake. Deep rooting crops such as Maize show potential to reduce N losses. DCD studies showed promise in reducing N losses from fodder crops. Other findings showed that annual cropping had a higher N loss risk than perennial crops.

N leaching losses from dairying was typically lower than Winter Green crops which were in turn less than winter potatoes. Timing of cultivation can have significant impacts on N leaching with high risk from autumn and winter cultivations.

No studies on P loss were found.

Supplementary Feed

Three studies in the Waikato region addressed the effect of dietary management and supplementary feed on N loss efficiency and N losses. Within the farm boundary maize supplementation has been observed to improve N loss efficiency but this may be reversed when the N loss from the maize production area is included in the farm system.

5. Research at Whatawhata

During the 1990's and 2000's there was extensive catchment research carried out at Whatawhata Research Station (175°05'E, 37°49'S) on hill country about 18 km west of Hamilton (initially led by Dr Bruce Thorrold now at DairyNZ and subsequently by Dr Mike Dodd AgResearch). This research was initially undertaken in partnership with NIWA (Dr John Quinn) and utilised artificial rainfall. These experimental studies included a range of detailed small plot studies and farm catchment scale studies. The small plot studies included the use of artificial rainfall intensity treatments and initially focused on erosion (sediment) losses but were extended to include the effect of soil P status (Olsen P) and fertiliser form (high soluble v less soluble P and S fertilisers) on N and P losses. Much of this research was never published but used to underpin ongoing studies. Additionally, artificial rainfall was used in studies to assess sediment losses from pugged soils. Some N and P measurements were also made but ceased early into the research. Much of this work was also never published.

NIWA staff were also involved in some catchment scale studies. Water samples from differing catchments (native bush, pasture, pine forest, and combinations of the three) were taken regularly over several years, both manually and with automatic samplers. These studies focused on the impacts of the different catchments on stream water quality. We understand that some sediment, faecal microbes, and some nutrient analyses were also made but only some have been published by Dr Mike Dodd.

A series of three papers were written (see Appendix 9.3) on work conducted at Whatawhata Research centre. These were titled:

Improving the economic and environmental performance of a New Zealand hill country farm catchment:

- 1. Goal development and assessment of current performance
- 2. Forecasting and planning land-use change and
- 3. Short-term outcomes of land-use change

The first paper details the process of characterising the current state of the case study catchment (i.e. collecting data on key indicators chosen by the catchment management group to assess business viability and ecosystem health).

The second paper of a the multi-stakeholder, integrated catchment management project at the Whatawhata Research Centre explored land use and management change options to improve the economic and environmental performance of the case study hill land catchment farm. The third paper looked at implementing land use management changes to improve economic and environmental performance of the Mangaotama case study catchment farm. Marked improvements were observed in the key environmental and economic performance indicators with optimal land use change.

Additionally a report was written for MAF reviewing the results, outputs and outcomes of recent rural catchment based research in New Zealand. Eighteen catchments were reviewed including Whatawhata.

Full references for the above articles are listed in the Appendix 9.3.

6. Ongoing Research of Relevance in the Waikato Region

Work underway in the Waikato region focusing on reducing N and P loss to waterbodies is being led by CRIs, universities and other groups focused on specific sectors.

Table 1 summarises lead organisations co-ordinating existing research programmes and studies in the Waikato region.

Table 1: Lead organisations undertaking research investigating loss of N and P to water-bodies in the Waikato region.

Crown Research Institutes	Universities	Other Organisations
AgResearch	Lincoln University	DairyNZ
Plant and Food	Waikato University	Foundation for Arable Res.
Environmental Science and Research (ESR)		Horticulture NZ
Landcare Research		Lincoln Ventures
NIWA		Potato Production Group
		Standoff Facility User Group
		Taupo Lake Care

The scope and focus of research programmes is diverse. A summary of ongoing research listing for each programme, the title, lead organisation and objectives is included in Appendix 9.2. There are programmes focusing on improving measurement of N leaching and others more focused on addressing the environmental impacts. Mitigation methods are under development mindful of the need to achieve acceptable soil and water quality standards. Some studies are focused on single catchments, e.g. Taupo, Rerewhakaaitu, Rotorua. The scope of research programmes varies. Some of the smaller studies are focusing on topics such as:

- Grazing management
- Effectiveness of winter cover crops
- End of drain treatment methods
- Nitrification inhibitors
- Tactical application of nutrients

MSI programmes are underway to improve the understanding of P loss processes in space and time so mitigations methods can be developed in a framework that will ensure delivery to farmers to encourage and monitor adoption in the context of environmental, economic, social and cultural drivers. Several SFF studies are measuring the physical and financial performance of farming systems relative to environmental impacts.

Information is being summarised and used to develop industry lead guidelines and codes of practice. The Farm Dairy Effluent (FDE) Code of Practice was released earlier this year. Design guidelines for stand-off facilities are to be developed soon.

7. Gaps in Knowledge and Research

Overall the amount of research completed or in progress found was relatively widespread. However, there were several gaps in specific areas of research found that could need addressing. In general areas of fertiliser use, stocking strategy, stock management and supplementary feeds had moderate amounts of research on N loss but little on P losses. There was a distinct lack of work on N and P in the Waikato region for CSAs, erosion, fencing of waterways, fertiliser form, filter strips, irrigation, P loss processes, optimal soil P, N and P sorbents, pasture species, races and lanes and P retention dams. Cropping, effluent management, N inhibitors, N loss processes, urine deposition and riparian management had a moderate amount of research but this was limited in some specific areas. However, there was a significant amount or research in the South Island on several areas of interest. Table 2 provides a summary of research gaps in the Waikato region.

Although there are a number of gaps in the research identified, there has been a moderate level of applied research undertaken in the Waikato region. Some of the ongoing research is focusing on areas which may help to reduce these gaps.

Area of interest	N research	P research	Comments
Sources and Pathways	·	·	
Critical source areas	None	Poor	None on N. Only one on P in the Waikato region but several in the South Island.
N Loss processes	Moderate	n/a	Moderate coverage
P Loss processes	n/a	Poor	Only one reference in the Waikato region.
Erosion	None	None	Two in South Island only
Urine deposition	Good	None	Four references in the region on N but none relating to P
Effluent Management		- ·	
FDE management	Moderate	Poor	No research on poorly drained, peat soils and those with hump and hollow drainage systems
Municipal and dairy factory effluent management	Good	Moderate	Moderate coverage in the Waikato region
Retired Areas			
Wetlands	Moderate-High	Good	Good coverage of the region for N but lesser coverage for P

Table 2: Extent of research that has been carried out in the Waikato region.

Area of interest	N research	P research	Comments
Retired Areas (continued)		I	
Riparian management	Good	Poor	Good coverage of the region for N but poor coverage for P
Fencing waterways	None	Poor	Main focus was on deer in the South Island, with only one reference in the Waikato region
Filter strips	Poor	Moderate	Four relevant references found
Fertiliser Management			
Fertiliser use	Moderate	Poor	Moderate research on N losses but little on effects of reducing N use. Only one reference on P found
Fertiliser form	None	Poor	None focusing on N. Several studies on P in South Island but only one on P in the Waikato region.
Optimal soil test P	n/a	Poor	Some South Island references
Inhibitors		I	
Inhibitors	Moderate	n/a	Moderate number of plot trials conducted on nitrification inhibitors but little on grazed systems.
Stock Management		·	
Pugging	Poor	Poor	Several on P in South Island
Stock management	Moderate	Poor	Good research on N in region but a poor coverage focusing on P
Restricted grazing	Poor	None	Mainly Manawatu
Land Management			
Irrigation	Poor	None	Only one N reference in Taupo. Three in South Island
N and P sorbents	Poor	Poor	Several in South Island
Pasture species	Poor	None	Only two references found
Races and lanes	None	None	South Island on P only
Retention dams	None	Poor	P only. None specified as in the Waikato region.
Cropping and Feeds			
Cropping	Good	none	Moderate coverage of N although limited for forage crops. The only references relating to P were outside the Waikato region.
Supplementary feeds	Good	None	Four references only

Table 2 (cont.): Extent of research that has been carried out in the Waikato region.

8. General recommendations for future research

8.1 Phosphorus

Research is required on defining CSAs on farms and catchments; this is ongoing in a new large MSI programme. Better knowledge of sediment and P losses in Waikato hill country is desirable as is a better understanding of benefits of mitigations to reduce these losses.

8.2 Nitrogen

Knowledge of attenuation of N from below the root zone to surface waters in different soils in the Waikato is required and this could be addressed in part in a new MSI programme. While research has identified the significance of urine-N leaching in winter, recent research indicates that summer and autumn losses may have been underestimated. Better knowledge of this is needed as this has implications for the use of mitigations and their timing.

Winter and summer forage cropping is increasing and more data is required to predict N leaching from these crops and the effectiveness of mitigation practices.

In view of the relatively high N fertiliser use, information on the reduction of N leaching from reduced strategic N use is warranted in conjunction with effects on production and economics.

8.3 Phosphorus, nitrogen and systems research

N and P losses to waterways from FDE can be significant on poorly drained soils but there is limited data on this in the Waikato region and on the benefits of management and mitigation practices.

A number of mitigations have had moderate evaluation using lysimeter and small plot trials but limited testing in grazing systems. More whole system research is needed to evaluate optimisation of mitigations. This would increase adoption by farmers, particularly if it is associated with wider evaluation of economic implications and other environmental emissions (e.g. greenhouse gases).

9. Appendices

9.1 Published Research

Sources and Processes

Topic No. Topics

- 1 Critical source areas
- 2 N loss processes
- 3 P loss processes
- 4 Erosion
- 5 Urine deposition

Mitigation and Management

- Topic No. Topics
 - 6 Effluent management Retired areas
 - 7 Wetlands
 - 8 Riparian management
 - 9 Fencing waterways
 - 10 Filter strips
 - Fertiliser Management
 - 11 Fertiliser use
 - 12 Fertiliser form
 - 13 Optimal soil test P
 - 14 Inhibitors
 - Animal Related Issues
 - 15 Pugging
 - 16 Stock management
 - 17 Restricted grazing
 - Land management
 - 18 Irrigation
 - 19 N & P sorbents
 - 20 Pasture species
 - 21 Races and Lanes
 - 22 Retention dams
 - Cropping and Feeds
 - 23 Forage crop / Arable
 - 24 Suppl feed

WRC literature survey - N & P loss from land to water Published Papers - Critical source areas

Id Title D080 Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.	Author (Year) McDowell, R. W. and R. J. Wilcock (2007).	Reference Journal of Environmental Quality 36(2): 540-548.	Objective / Study aim Quantify P loss to a stream in a dairy catchment	Findings Modelled P losses to establish P sources: topsoil by overland flow - maybe lanes. Riparian protection and management of soil P recommended	Location SI	N/P	Topic Critical source areas Riparian management Races Optimal soil test P
D082 Identifying and linking source areas of flow and P transport in dairy-grazed headwater catchments, North Island, New Zealand.	Muller, K., M. S. Srinivasan, et al. (2010).	Hydrological Processes 24(25): 3689- 3705.	Study of P sources and flows in a dairy grazed Waikato catchment	P transport not limited to runoff. Effluent ponds significant source. Shallow groundwater flows are important	Waikato	Ρ	Critical source areas Effluent management
E03 Integrated assessment of phosphorus in the Lake Hayes catchment, South Island, New Zealand.	Caruso, B. S. (2000).	Journal of Hydrology 229(3-4): 168- 189.	Illustrates an integrated water-shed approach for assessment of P in a catchment	Considerable uncertainty in results. Identified potential P sources. Useful for pollution assessment	SI	Ρ	Critical source areas
E15 Approaches for quantifying and managing diffuse phosphorus exports at the farm/small catchment scale.	McDowell, R. W., D. Nash, et al. (2009).	Journal of Environmental Quality 38(5): 1968-1980.	Investigate two approaches for quantifying and managing P losses either at the small catchment scale or farm scale.	Deterministic cost benefit analysis was compared with a knowledge integraton process using Baysien networks. Both models were selective in what was included. Both produced working models.		Ρ	Critical source areas
E22 Hydrological approaches to the delineation of critical-source areas of runoff. (Special issue: New Zealand agricultural research in the twenty-first century. Celebrating 50 years of publication.).	Srinivasan, M. S. and R. W. McDowell (2007).	New Zealand Journal of Agricultural Research 50(2): 249-265.	Study of methods to identify areas and sources of P critical to runoff (critical source areas)	-	Otago	Ρ	Critical source areas
E23 Identifying critical source areas for water quality: 1. Mapping and validating transport areas in three headwater catchments in Otago, New Zealand.	Srinivasan, M. S. and R. W. McDowell (2009).	Journal of Hydrology 379(1-2): 54-67.	Validation / assessment of methods for identification of CSAs.	Process based approaches are more applicable - more promising for future development. Other approaches dependent on input data which is more difficult to obtain.	Otago	Ρ	Critical source areas

- e
- ce
- ce
- e

ld Title

G50 Identifying critical source areas for water quality: 2. Validating the approach for phosphorus and sediment losses in grazed headwater catchments.

Author (Year) Reference McDowell RW, Srinivasan MS (2009) Journal of Hydrology 379:68-80

Objective / Study aim Identifcation of critical source areas Findings

A simpler approach to P mitigation would be to target high risk areas such as lanes, gateways, troughs and barns

Location

Otago

N/P Topic P Critical source areas

WRC literature survey - N & P loss from land to water Published Papers - N loss processes

Id A03	Title Denitrification capacity in the vadose zone at three sites in the Lake Taupo catchment, New Zealand.	Author (Year) Barkle, G., T. Clough, et al. (2007).	Reference Australian Journal of Soil Research 45(2): 91-99.	Objective / Study aim Study nutrient transformations in the zone between soil and growndwater	Findings There is evidence of denitrification in the lower vadose zone. Variable.	Location Taupo	N/P N	Topic N loss processes
A31	Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: a comparison of three approaches.	McLay, C. D. A., R. Dragten, et al. (2001).	Environmental Pollution 115(2): 191- 204.	To detemine if shallow nitrate groundwater concentrations can be predicted using landuse information and topsoil properties	Three approaches investigated. All judged unsuitable. On a wider scale nitrate contaminaton in the region reflects intensive agricultural practices. Site specific factors may affect shallow groundwaters	Waikato	Ν	N loss processes Modelling
A44	Low nitrate contamination of shallow groundwater in spite of intensive dairying: the effect of reducing conditions in the vadose zone-aquifer continuum.	Stenger, R., G. Barkle, et al. (2008).	Journal of Hydrology, New Zealand 47(1): 1-24.	Investigate whether or not substantial nitrate reduction occurs below the root zone.		Toenepi, Waikato	Ν	N loss processes
B01	Fate of the 15N-labelled faeces fraction of dairy farm effluent (DFE) irrigated onto soils under different water regimes.	Barkle, G. F., R. Stenger, et al. (2001).	Nutrient Cycling in Agroecosystems 59(1): 85-93.	Study of movement of N in the faecal fraction of FDE after irrigation onto soil under wet and dry regimes	Approximately: 10% remains near surface, 10% uptake by plants, 38% in soil organic fraction, <2% inorganic / microbial fraction	Waikato	Ν	N loss processes
B05	Fate of 15N labelled urine on four soil types.	Clough, T. J., S. F. Ledgard, et al. (1998).	Plant and Soil 199(2): 195-203.	Determine the effect of soil type on fate of urinary N	Soil type affected the timing and form of inorganic N leaching. Macropore flow contributed to leaching of urea in some soils.	Waikato	Ν	N loss processes
B11	Nitrogen concentration in the urine of cattle, sheep and deer grazing a common ryegrass/cocksfoot/white clover pasture.	Hoogendoorn, C. J., K. Betteridge, et al. (2010).	New Zealand Journal of Agricultural Research 53(3): 235-243.	Determine urine N conc. in female sheep, beef and deer over time.	Urine N concentration change rapidly within a few days (3). Differerences between species significant but inconsistent.	Taupo	Ν	N loss processes

ld B2:	Title Influence of time of application on the utilization of nitrogen fertilizer by asparagus, estimated using 15N.	Author (Year) Ledgard, S. F., J. A. Douglas, et al. (1992).	Reference Plant and Soil 147(1): 41-47.	Objective / Study aim Determine the effect of N fertiliser on asparagus production	Findings 12% response to fertiliser only in the first of three years. No significant effect observed due to rate or timing.	Location Waikato
B5 ⁻	Animal treading stimulates denitrification in soil under pasture.	Menneer, J. C., S. Ledgard, et al. (2005).	Soil Biology and Biochemistry 37(9): 1625-1629.	Study of the effects of treading wet soil on denitrification	Treading reduces soil aeration, reduces plant growth. This with the resultant increase in NH4+ and NO3- stimulates denitrification	Waikato
141	Denitrification rates on amended dairy pasture plots: Can in situ denitrification be manipulated to control N loss? .	• • • •	In: Nutrient management in a rapidly changing world. (Eds L.D. Currie and C.L. Lindsay). Occasional Report No. 22. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Investigate ammendment of soil as a means to control denitrification and reduce N leaching	Some changes observed but not on an annual basis. Propose to focus on controlling denitrification during periods of peak denitrification activity	Waikato
,0C	Denitrification and Availability of Carbon and Nitrogen in a Well-drained Pasture Soil Amended with Particulate Organic Carbon.		Journal of Environmental Quality 40(3): 923-930	Investigate use of particulate organic carbon to increase denitrification	Manipulation of denitrification rate may be possible. Difficult to measure effectiveness owing to temporal nature of process dependent on nitrate and moisture content.	Waikato
J10	Nitrogen leaching from sheep, cattle and deer-grazed pastures in the Lake Taupo catchment in New Zealand.	Hoogendoorn C J, Betteridge K, Ledgard S F, Costall D A, Park Z A and Theobald P W (2011).	Animal Production Science 51: 416- 425.	Quantify leaching losses of sheep, beef and deer grazing under similar systems	N leaching losses were lower from sheep and deer grazing, than from cattle grazing under similar intake systems.	Таиро

- N/P Topic N N loss processes Fertiliser use
- N Stock management Pugging N loss processes
- N N loss processes
- N N loss processes
- N N loss processes

WRC literature survey - N & P loss from land to water Published Papers - P loss processes

Id Title A17 Effects of sheep grazing episodes on sediment and nutrient loss in overland flow.		Reference Australian Journal of Soil Research 42(2): 213-220.	Objective / Study aim Investigate the effect of sheep grazing on nutrient runoff on hill-country	Findings Particulate nutrients correlated to % bare ground. Grazing reduces infiltration rate, increases runoff and increases loads post-grazing	Location Whatawhata		Topic P loss processes Stock management
A54 Phosphorus leaching from pastures can be an environmental risk and even a significant fertiliser expense.	Redding, M. R., A. Ghani, et al. (2006).	Proceedings of the New Zealand Grassland Association 68: 293-296.	Does significant P leaching occur under normal pastoral farming systems?	Yes. Some Rotorua soils of Iow ASC have enriched P conc. to a depth of 1.5 m indicative of P leaching. Alternative management strategies need to be developed.	Rotorua	Ρ	P loss processes
D022 Contaminant losses in overland flow from cattle, deer and sheep dung.	McDowell, R. W. (2006).	Water Air & Soil Pollution 174(1-4): 211-222.	Determine risk of losses arising from overland flow for up to 30 days following depostion of dung.	Risks: DRP > TP > NH4-N with NO3- N & SS losses negligble. Most risk accounted for in first few days.	Invermay, SI	Ρ	P loss processes
 E11 Phosphorus in humped and hollowed soils of the Inchbonnie catchment, West Coast, New Zealand: II. Accounting for losses by different pathways. 	McDowell, R. W. (2008).	New Zealand Journal of Agricultural Research 51(3): 307-316.	Study of P loss processes from dairy pasture to Lake Brunner a region of high rainfall.	Amount and form of P loss measured.Significant processes identified. Mitigation management practices discussed.	SI		P loss processes Optimal soil test P Fertiliser form
E16 Particulate phosphorus transport within stream flow of an agricultural catchment.	McDowell, R. W. and R. J. Wilcock (2004).	Journal of Environmental Quality 33(6): 2111-2121.	Identification of key P loss pathways from intensively grazed Southland dairy pasture	Stream conc of TP and DRP high in summer / autumn. Loads highest in winter. Source: topsoil. Route: tile drains > overland flow. Mitigation: reduce Olsen P.	Southland, SI	Ρ	P loss processes
E20 Phosphorus exchangeability and leaching losses from two grassland soils.	Sinaj, S., C. Stamm, et al. (2002).	Journal of Environmental Quality 31(1): 319-330.	Study of P loss processes in soils under flood irrigation and impact of preferential flow	High fixing capacity of sub-soil was able to fix P. There are risks in assessing P loss on the basis of P mobility in the topsoil alone.	Canterbury, SI	Ρ	P loss processes

	Title Connecting phosphorus loss from land to surface water quality.	Author (Year) McDowell RW, Biggs BJF, Sharpley AN, Nguyen L (2004)	Reference Chemistry and Ecology (London). 20:1- 40	Objective / Study aim Review of mechanisms of P transfer from landscape to surface waters	5	Location N Not available - Best guess SI.	Topic P loss processes
		McDowell RW, Nash DM, Robertson F (2007)	Journal of Environmental Quality 36:1281-1288.	grazed pasture	DRP accounted for majority of P lost. Sources: treading / dung > treading > pasture plants / soil > pasture plants	Southland, SI	P loss processes

WRC literature survey - N & P loss from land to water

Published Papers - Erosion

Id D01	Title ⁵ Phosphorus export from an agricultural watershed: Linking source and transport mechanisms.	Author (Year) McDowell, R., A. Sharpley, et al. (2001).	Reference Journal of Environmental Quality 30(5): 1587-1595.	Objective / Study aim Identify factors affecting streamflow DRP & TP in an agricultural catchment	Findings Factors: Erosion, soil P conc. A channel sediment P sorption

^{E04} Effects of landslides on contaminant Caruso, B. S. and E. Jensen (2001). sources and transport in steep pastoral hill country.

Journal of Hydrology New Zealand 39(2): 127-154.

Investigation of movement of contaminants mediated by landslide

Landslide affects nutrient movement Lake Tutira, directly. Hawkes Bay

Location	N/P Topic	
SI	P Erosion	
	Optimal soil	
	test P	
		SI P Erosion Optimal soil

N&P Erosion

WRC literature survey - N & P loss from land to water Published Papers - Urine deposition

	Title A stochastic model of urinary nitrogen and water flow in grassland soil in New Zealand.	Author (Year) Shorten, P. R. and A. B. Pleasants (2007).	Reference Agriculture, Ecosystems & Environment 120(2/4): 145-152.	Objective / Study aim Model the variability of urine patch N leaching in Taupo	Findings N leaching in winter greater than in summer. Model predicted that 38, 61, 71% of N in single, double and triple urine patches leached during winter.		Topic Urine deposition Modelling
B41	Effects of cow urine and its major constituents on pasture properties (ryegrass).	Ledgard, S. F., K. W. Steele, et al. (1982).	New Zealand Journal of Agricultural Research 25(1): 61-68.	Effects of cow urine on pasture	Yield increased for 2 - 3 harvests. Plant N and K increased. Clover growth and N fixation reduced.	Waikato	Urine deposition
	The effect of a single application of cow urine on annual N2 fixation under varying simulated grazing intensity, as measured by four 15N isotope techniques.	Menneer, J. C., S. Ledgard, et al. (2003).	Plant and Soil 254(2): 469-480.	Study effects of dairy cow urine on nitrogen fixation in legume/ryegrass pastures	Urine has a prolonged effect reducing N fixation. Defoliation intensity may be a potential tool for enhancing N fixation.	Waikato	Urine deposition
B64	Application of carbon additives to reduce nitrogen leaching from cattle urine patches on pasture.	Shepherd, M., J. Menneer, et al. (2010).	New Zealand Journal of Agricultural Research 53(3): 263-280.	Evaluation of use of sawdust / sucrose to decrease leaching of N from newly deposited urine patches	Sawdust ineffective. Risk of yield loss and large C applications may limit practical application.	Waikato	Urine deposition

Page: 5-1 Printed: 2/06/2011 5:35 p.m.

WRC literature survey - N & P loss from land to water Published Papers - Effluent management

ld A07	Title Wastewater denitrification using carbonaceous beds.	Author (Year) Brice, R., S. Cameron, et al. (2008).	Reference Water 35(7): 96-101.	Objective / Study aim Evaluation of inexpensive technology for wastewater denitrication discussed	Findings Performance judged successful	Location Taupo, Northland, Auckland	Topic Effluent management
A42	Changes in soil properties after application of dairy factory effluent to New Zealand volcanic ash and pumice soils.		Australian Journal of Soil Research 39(3): 505-518.	Investigate changes in soil properties following application of dairy factory effluent to Waikato soils	High N application rate. Soil quality indicators improved. N cycling increased - N leaching a concern	Waikato	Effluent management
A52	Nitrate leaching from a free-draining volcanic soil irrigated with municipal sewage effluent in New Zealand.	Magesan, G. N., C. D. A. McLay, et al. (1998).	Agriculture Ecosystems & Environment 70(2-3): 181-187.	Measure N leaching from municipal sewage irrigated soil near Rotorua	Approx 50% of nitrate readily leached beyond topsoil. Nitrate conc. depend on application rate. Large N loads in irrigated catchment waterbodies observed in winter. Viability questioned.	Rotorua	Effluent management
D002			Journal of Environmental Quality 34(2): 635-643.	Study of leaching losses from four soils treated with domestic wastewaters	Applying effluent increased plant uptake of N and P. N & P leached predominently organic. Greater N & P leaching from gley soils due to preferential flow.	Four sites - not specified	Effluent management
D008	Irrigation of an allophanic soil with dairy factory effluent for 22 years: Responses of nutrient storage and soil biota.	Degens, B. P., L. A. Schipper, et al. (2000).	Australian Journal of Soil Research 38(1): 25-35.	Effects of long term application (22 yrs) of dairy factory effluent on allophanic soil	Increased Total N at depths 0.1 - 0.5 m. 8% of N applied in soil (0 - 0.75 m). Increased Total P and Olsen P at all depths. Potential for further P storage.	Rotorua Whakatane	Effluent management
D082	Identifying and linking source areas of flow and P transport in dairy-grazed headwater catchments, North Island, New Zealand.	Muller, K., M. S. Srinivasan, et al. (2010).	Hydrological Processes 24(25): 3689- 3705.	Study of P sources and flows in a dairy grazed Waikato catchment	P transport not limited to runoff. Effluent ponds significant source. Shallow groundwater flows are important	Waikato	Critical source areas Effluent management

	Title Nutrient leaching and changes in soil characteristics of four contrasting soils irrigated with secondary-treated municipal wastewater for four years.	Author (Year) Sparling, G. P., L. Barton, et al. (2006).	Reference Australian Journal of Soil Research 44(2): 107-116.	Objective / Study aim Investigate changes in chemical, biochemical and physical characteristics of soils arising from long-term wastewater treatment	Findings Allophanic and pumice soils p for effective treatment. Na is > 50% of N in organic form.
	Land application for farm dairy effluent: development of a decision framework for matching management practice to soil and landscape risk.	Houlbrooke DJ, Monaghan RM (2010)	In Farming's future: minimising footprints and maximising margins (Ed L.D. Currie). Occasional report No. 23. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	o 1	Risk is dependent on features sloping land, artificial drainag infilration, impeded drainage. Addressed by tool to tailor sp BMP to manage risk to water
	Farm dairy effluent: findings of recent research studies in the Waikato.	Longhurst, R D, O'Connor, M B, Roberts, A H C and Waller, J E, (1999).	In: Best soil management practices for production. (Eds L D Currie, M J Hedley, D J Horne and P Loganathan). Occasional report No. 12. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Report on studies in Waikato to obtain information from which BMP could be developed	0
	Does water and/or effluent irrigation increase nitrogen leaching from pumice soils under dairying?.	C P Burgess, G Barkle, P L Singleton, R Hill, R Stenger and T Fenton, (2002).	In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.		Leaching is more related to p use efficiency than the annua of drainage. Nitrate loss: Eff > IrrEff > Irr
	Farm Dairy Effluent (FDE) Design Standards.	J. Powers, Borrie, N., (2011).	At: http://www.dairynz.co.nz/file/fileid/355 47	Describe design standards for farm dairy effluent systems operating in New Zealand	-
	Matching farm dairy effluent storage requirements and management practices to soil and landscape features.	Houlbrooke, D.J.; Monaghan, R.M.; McLeod, M. (2010).	Report for Environment Waikato	Describe soil drainage mechanisms and provide a framework for development of minimum storage requirements and application practices in the Waikato	BMPs vary depending on soil topography. A framework is recommended for use in desi FDE systems to reduce risk of contamination of groundwate Research of peat soils & hum hollow drainage systems is la
	Nitrogen leaching from soil lysimeters irrigated with dairy shed effluent and having managed drainage.	Singleton, P.L.; McLay, C.D.A.; Barkle, G.F. (2001).	Australian Journal of Soil Research 39: 385-396	Quantify amounts and forms of N leached on FDE irrigation of a gley soil over a period of two years	Application of FDE affects an and forms of N leached. Amo leached is approximately prop Organic N comprises a large proportion of N leached.

Location s preferred Waikato

is an issue.

N/P Topic N&P Effluent management

- res such as Not specified age, poor ge. specific terbodies
- TDE N conc Waikato arge due to FDE ilisers in a
- pasture N Taupo Jual volume
- Irr = NonIrr
- New Zealand ^N wide
- coil type and Waikato s esign of k of direct aters. ump and lacking amount Waikato
- mount roportional. ge

N&P Effluent

P Effluent

management

- management
- N Irrigation
 Effluent
 management
- N Effluent management
- N Effluent management
- N Effluent management

WRC literature survey - N & P loss from land to water Published Papers - Wetlands

Id A40	Title How much runoff do riparian wetlands affect?	Author (Year) Rutherford, J. C., D. Schroer, et al. (2009).	Reference New Zealand Journal of Marine and Freshwater Research 43(5): 1079- 1094.	Objective / Study aim Used measurements from 6 wetlands to model performance over entire Taupo catchment	Findings Riparian / valley wetlands are only 5% of the catchment but may attentuate N in 11-19% of runoff	Location Taupo	N/P N	Topic Wetlands Riparian management
E05	Treatment wetlands for removing phosphorus from agricultural drainage waters. Nutrient management in agricultural watersheds: a wetlands solution.	DeBusk, T. A., K. A. Grace, et al. (2005).	E. J. Dunne, K. R. Reddy and O. T. Carton (Eds.). Wageningen, Wageningen Academic Publishers: 167-178.	Discussion of P processes in wetlands. Pilot studies in several countries to evaluate techniques discussed	P cycling in wetlands is complex. Full scale use in practice yet to be proven.		Ρ	Wetlands
GO	Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review.	Ballantine DJ, Tanner CC (2010)	New Zealand Journal of Agricultural Research 53:71-95.	5 5	Recommend: Porous materials or materials enriched with AI or Fe such as melter slag	Not specified	Ρ	Wetlands P sorbents
G20	Floating wetlands for stormwater treatment: removal of copper, zinc and fine particulates.	Headley TR, Tanner CC (2007)	Technical Publication, Auckland Regional Council, New Zealand	5	Removes 21-50% of DRP from artificial urban stormwater.	n/a - In lab study	Ρ	Wetlands
G86	Nutrient capture by experimental watercress beds, Lake Rotorua. In: Farming's future: minimising footprints and maximising margins	Sukias J, McKergow L (2010)	(Currie LD, Christensen CL, Eds.), Occasional Report No. 23, Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. p 142-151.	Evaluation of watercress as a method for removal of nutrients from agicultural runoff	Diversion of water through a watercress bed removed 33% of N at low flows and 16% at higher flows	Rotorua	N&P	Wetlands
G88	Plants as ecosystem engineers in subsurface-flow treatment wetlands.	Tanner CC (2001)	Water Science Technology 44:(11- 12)9-17.		In general net removal by plant is a relatively small proportion of total removal. Plants serve to enhance key nutrient transformation processes	n/a - Review	Ρ	Wetlands

	Title Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture.	Author (Year) Tanner CC, Nguyen ML, Sukias JPS (2005)	Reference Agriculture Ecosystems and Environment 105:145-162	Objective / Study aim Evaluation of the performance of a constructed wetland draining dairy pasture	Findings Approx twice the amount of DRP and TP exiting the wetland than is entering in the first year. Amounts similar in 2nd year. May be due to establishment effects.	Location Waikato	N/P	Topic Wetlands
	Nitrogen removal by a seepage wetland intercepting surface and subsurface flows from a dairy catchment in waikato.	M L Nguyen, N Eynon-Richards and J Barnett, (2002).	In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Quantify the N removal performance of a seepage wetland in a dairy catchment in the Waikato	The wetland reduced incoming nitrate by 70 - 95% except when outflows exceeded inflow and/or nitrate inflow was not adequately intercepted. The wetland may be a source of NH4+, DON and PN.	Waikato	Ν	Wetlands
	Last ditch effort to reduce nutrient export from drained dairy pastures using constructed wetlands.	C C Tanner, M L Nguyen and J P S Sukias, (2002).	In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Quantify the N & P removal performance of a constructed wetlands in the Waikato and Northland	Drainage flows highly pulsed. In the Waikato: Conc of nitrate & TN reduced. NH4+ & DRP increased. Mass balance indicated substantial removal of DRP and all forms of N.	Waikato	N&P	Wetlands
	Export of nitrogen in subsurface drainage from irrigated and rain-fed dairy pastures and its attenuation in constructed wetlands.	Chris Tanner, M L Nguyen and J P S Sukias, (2005).	In: Developments in fertiliser application technologies and nutrient management. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 18. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Quantify constructed wetland removal performance for wetlands receiving drainage from irrigated and rain-fed dairy pastures		Northland and Waikato	Ν	Wetlands
	Dairy farm drainage nitrate attenuation wetlands and filters.	James Sukias, C Tanner and L McKergow, (2006).	In: Implementing sustainable nutrient management strategies in agriculture. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 19. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Compare the effectiveness of constructed wetlands and wood chip filters for removal of nitrate	To be effective constructed wetlands should be 2-5% of catchment area; woodchip filters 1.2-2.4% of catchment area.	Waikato	Ν	Wetlands N sorbents
	Nutrient capture by experimental watercress beds, Lake Rotorua.	James Sukias and L McKergow, (2010).	 In: Farming's future: Minimising footprints and maximising margins. (Eds L.D. Currie and C.L. Christensen). Occasional Report No. 23. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 	Investigate the effectiveness of Watercress as a measure to reduce stream N & P.	Watercress dies back from Jun to Sep. Removal of N and P effective in summer during periods of low flow. Not effective at high flow. Yet to be developed to farm scale	Rotorua	N&P	Wetlands
	Surface flow constructed wetlands as a drainage management tool – Long term performance.	James Sukias and C Tanner, (2011).	In: Adding to the knowledge base for the nutrient manager. (Eds L.D. Currie and C L. Christensen). <u>http://flrc.massey.ac.nz/publications.ht</u> ml. Occasional Report No. 24. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	nutrient removals of constructed wetlands	Removal of Total N ranged from 18 - 43% of annual influent load. Annual flow proportional total P increased by up to 115%	Waikato	N&P	Wetlands

ld Title

¹⁵⁶ Floating treatment wetlands: A new tool for nutrient management in lakes C Yates and T Headley, (2011). and waterways?.

Author (Year)

Reference

the nutrient manager. (Eds L.D. Currie Performance in experimental tanks is and C L. Christensen). http://flrc.massey.ac.nz/publications.ht ml. Occasional Report No. 24. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.

Objective / Study aim

Chris C Tanner, J P S Sukias, J Park, In: Adding to the knowledge base for Floating treatment wetland described. discussed

Location	N/P	Topic
Waikato	N&P	Wetlands

Page: 7-3 Printed: 2/06/2011 5:35 p.m.

WRC literature survey - N & P loss from land to water

Published Papers - Riparian management

ld Title	Author (Year)	Reference	Objective / Study aim	Findings		N/P	Торіс
A02 Phosphorus of soils in riparian and non-riparian wetland and buffer strips in the Waikato area, New Zealand.	Aye, T. M., M. L. Nguyen, et al. (2006).	New Zealand Journal of Agricultural Research 49(3): 349-358.	Investigation of P release processes in riparian buffer strips	Soils with high Olsen P may have high P loss as subsurface flow	Waikato	t F	Dptimal soil est P Riparian management
A13 Effects of riparian set-aside on soil characteristics in an agricultural landscape: implications for nutrient transport and retention.	Cooper, A. B., C. M. Smith, et al. (1995).	Agriculture, Ecosystems & Environment 55(1): 61-67.	Effectiveness of a riparian scrub, set- aside and pasture in terms of nutrient transport	Riparian set-aside delivers runoff with low sediment and nitrate but high in dissolved P	Taupo		Riparian nanagement
A22 Nutrient and vegetation changes in a retired pasture stream: recent monitoring in the context of a long- term dataset.	Howard-Williams, C. and S. Pickmere (1999).	Science for Conservation: 41.	Long-term monitoring of changes in retired stream	Permanent grassland resistant to invasion - assisted plantings required. % of nutrients removed has decreased.	Taupo		Riparian nanagement
A23 Long-term nutrient and vegetation changes in a retired pasture stream: monitoring programme and vegetatior survey 1999-2003, updating data from 1976.	(2005). າ	Science for Conservation. Wellington, Department of Conservation: 32.	Long-term monitoring of changes in retired stream	Riparian biodiversity increasing at 3%/year. % of nutrients removed increasing. Intensification and urban development indicate further change is inevitable	Taupo		Riparian nanagement
A39 Influences of leaf toughness and nitrogen content on in-stream processing and nutrient uptake by litter in a Waikato, New Zealand, pasture stream and streamside channels.	Quinn, J. M., G. P. Burrell, et al. (2000).	New Zealand Journal of Marine & Freshwater Research 34(2): 253-271.	Improve basis for selection of plants for riparian buffers	Highly retentive streams require wide variety of plants / leaf types. Soft N- rich leaves may be OK for streams frequently flushing litter downstream.	Waikato		Riparian nanagement
A40 How much runoff do riparian wetlands affect?	Rutherford, J. C., D. Schroer, et al. (2009).	New Zealand Journal of Marine and Freshwater Research 43(5): 1079-1094.	Used measurements from 6 wetlands to model performance over entire Taupo catchment	Riparian / valley wetlands are only 5% of the catchment but may attentuate N in 11-19% of runoff	Taupo	F	Wetlands Riparian nanagement

		Title Watershed riparian management and its benefits to a eutrophic lake.	Author (Year) Williamson, R. B., C. M. Smith, et al. (1996).	Reference Journal of Water Resources Planning and Management 122(1): 24-32.	Objective / Study aim Model benefits to eutrophic Lake Rotorua of implementing diffuse source controls	Findings Estimate controls will reduce watershed total P loads by 20 assist in shifting lake status to mesotrophic.
С	;	Riparian pasture retirement effects on sediment phosphorus and nitrogen in channellised surface runoff from pastures.	Smith, C.M. (1989).	New Zealand Journal of Marine and Freshwater Research 23(1): 139-146	Evaluation of effectiveness of riparian pasture retirement on steep slopes by assessment of channellised runoff - 22 month study	reduces surface runoff and pe
D	i	Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.	McDowell, R. W. and R. J. Wilcock (2007).	Journal of Environmental Quality 36(2): 540-548.	Quantify P loss to a stream in a dairy catchment	Modelled P losses to establis sources: topsoil by overland f maybe lanes. Riparian protec management of soil P recom
I.		Effects of riparian vegetation on nitrate removal processes.	F Matheson, M L Nguyen, B Cooper and T Burt, (2002).	In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Short term study on the effectiveness of bare soil and wetland plants on nitrate removal processes	Dentrification was the predom removal process irrespective harvesting (62%); less so for (29%).
1:	1	Field experiments to determine the transformations of nitrogen within a lake taupo subcatchment.	Rob Collins, J Sukias, G Barkle and R Stenger, (2005).	In: Developments in fertiliser application technologies and nutrient management. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 18. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Overview of program to describe N transformations and pathways in wetlands, vadose zone and stream network of a Taupo subcatchment	Nitrate removal up to 95% ca within riparian wetlands. Subs NH4+ may diminish relative importance of nitrate loss. Denitrification greater in tops uppeer vadose zone.
J		•	Dodd, M.B.; Quinn, J.M.; Thorrold, B.S.; Parminter, T.G.; Wedderburn, M.E. (2008).	New Zealand Journal of Agricultural Research 53: 155-169.	Report improvement of environmental performance indicators on implementing land use changes to improve farm economic performance.	Reforestation and riparian zo development were undertake intensification of the remaind farm. Improving indicators we sediment (76%) and phospho (62%).

Location

ce 20%. Will s towards

Rotorua 'ill

N/P Topic N Riparian management

t effectively Waikato pollutant ng-term N&P Riparian management

blish P SI ad flow tection and commended

lominant N Not specified ve of for bare soil

can occur Waikato ubsurface e

psoil and

zone Whatawhata ^P Rip ken with main nder of the Sto were main horus

- Critical source areas
 Riparian
 management
 Races
 Optimal soil
 test P
- N Riparian management

N Riparian management

 P Riparian management Stock management

WRC literature survey - N & P loss from land to water Published Papers - Fencing waterways

Id Title D024 Water quality catchments w	in headwater ith deer wallows.	Author (Year) McDowell, R. W. (2007).	Reference Journal of Environmental Quality 36(5): 1377-1382.	Objective / Study aim Determine the contribution of N & P loads arising from deer wallows	Findings Median concentrations in excess of recommended guidelines for lowland water quality and contact recreation. Recommend deer wallows be fenced off.	Location Invermay & Balclutha, SI	N/P P	Topic Fencing waterways
	fe wallows to improve n deer farmed	McDowell, R. W. (2009).	New Zealand Journal of Agricultural Research 52(1): 81-90.	How to manage deer wallows to mitigate contaminant loss to surface waters?	Fencing off old wallow with riparian planting and use of a 'safe' wallow reduced loads by 90%. P & SS losses reduced. Mitigation recommended.	Balclutha, SI	Ρ	Fencing waterways
•	nd sediment loss in a h winter forage grazing / dairy cattle.	McDowell, R. W. (2006).	Journal of Environmental Quality 35(2): 575-583.	Study of the effects of winter forage grazing of dairy cattle on P loss processes	Compared to clearing up of stream banks P losses on moderately sloping land were minimal. SS load increased by 75%	Balclutha, SI		Stock management Fencing waterways
a water trough		Bagshaw C, Thorrold B, Davison M, Duncan IJH, Matthews LR (2008)	Applied Animal Behaviour Science 109:155-166.	A study of the behaviour of beef cattle with respect to access to streams when supplied with trough water	The provision of water troughs do not effectively deter beef cattle from accessing streams in hill country. No change in use of streams observed	Whatawhata, Waikato	Ρ	Fencing waterways
G35 Water quality fenced-off from	of a stream recently m deer.	McDowell RW (2008)	New Zealand Journal of Agricultural Research 51:291-298	Study effects of fencing off a stream and wallow on stream water quality	P loading in stream decreases up to 90% on exclusion of deer. DRP not significantly affected.	Invermay, SI	Ρ	Fencing waterways
		McDowell RW, McGrouther N, Morgan G, Srinivasan MS, Stevens DR, Johnson M, Copland R (2006)	Proceedings of the New Zealand Grassland Association 68:183-188	Quantify the effect of selected strategies in terms of improving soil and water quality on deer focus farms	Sediment trap reduces TP concentrations by 10%. Fencing off improved water quality	Otago & Southland, SI		Retention dams Fencing waterways

WRC literature survey - N & P loss from land to water Published Papers - Filter strips

	Title Landscape grass filter strips in the Rotorua Lakes catchment.	Author (Year) McKergow L, Taylor A, Stace C, Costley K, Timpany G, Paterson J (2007)	Reference In: Designing Sustainable Farms: Critical Aspects of Soil and Water Management (Currie LD, Tayes LJ Eds.), Occasional Report No. 20, Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand, pp. 322-330.	Objective / Study aim Measure effectiveness of hillslope grass filter strips in the Rotorua catchment	Findings Trapping of nutrients is variable. Concentrations and loads of SS and TP in inflowing runoff are reduced by more than 40%	Location Rotorua	N/P	Topic Filter strips
	Enhancing the P trapping of pasture filter strips: successes and pitfalls in the use of water supply residue and polyacrylamide.	Redding MR, Welten B, Kear M (2008)	European Journal of Soil Science 59:257-264.	Study of methods for improving performance of pasture filter strips	Use of alum and polyacrylamide increases P retention by up to 40%. Effectivenes is dimished by drying.	Ruakura, Waikato	Ρ	Filter strips
	Riparian pasture retirement effects on sediment, phosphorus, and nitrogen in channelised surface run-off from pastures.	· · · · ·	New Zealand Journal of Marine Freshwater Research 23:139-146.	Study how effective riparian strips are for reduction of P runoff from pasture	5	Tauwhare, Waikato	Ρ	Filter strips
	Implementing on-farm P mitigations in Rerewhaakitu catchment .	Bob Longhurst, M Hawke, B Parker and S Balvert, (2009).	In: Nutrient management in a rapidly changing world. (Eds L.D. Currie and C.L. Lindsay). Occasional Report No. 22. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Development of methods / strategies on a catchment scale to assist farmers minimise the environmental impact of farming on a lake	and implementation of mitigation	Rerewhakaaitu		P sorbents Filter strips

WRC literature survey - N & P loss from land to water Published Papers - Fertiliser use

Id Title A04 Nitrate leaching and productivity of some farming options in the Lake Taupo catchment.	Author (Year) Betteridge, K., C. J. Hoogendoorn, et al. (2007).	Reference Proceedings of the New Zealand Grassland Association 69: 123-129.	Objective / Study aim Investigate N leaching potential of new and existing farm systems in Taupo catchment	Findings N-fertilised annual crops associated with high N leaching	Location Taupo	N/P N		pic liser use
A09 The effect of situational variability in climate and soil, choice of animal type and N fertilisation level on nitrogen leaching from pastoral farming systems around Lake Taupo, New Zealand.	•	Agricultural Systems.	Effects of climate, soil type, fertliliser and stock types on N leaching as determined by the EcoMod model	Fert N has propensity to leach. Weather variation between year and soil type has marked influence. N leaching depends on urine deposition	Taupo	Ν	Fertil	liser use
A14 Potential for nitrate leaching from different land uses in the Pukekohe area.	Crush, J. R., S. N. Cathcart, et al. (1997).	Proceedings of the New Zealand Grassland Association 59: 55-58.	N leaching modelled from different land-uses in Pukekohe area	Land use options ranked. Winter crops have higher N surplus than summer crops. Practices increasing leaching were: high N fert, prolonged history of cultivation, no cover crops	Pukekohe			le / hort liser use
A18 Winter nitrate leaching losses from three land uses in the Pukekohe area of New Zealand.	Francis, G. S., L. A. Trimmer, et al. (2003).	New Zealand Journal of Agricultural Research 46(3): 215-224.	Compare nitrate leaching losses from three different land-uses (dairy, winter potatoes, winter greens)	Dairy < Winter greens < Winter potatoes. Drivers: Pre-winter N fert and mineralisation of residues	Pukekohe			le / hort liser use
 A29 Effect of fertiliser rate and type on the yield and nitrogen balance of a Pukekohe potato crop. 	Martin, R. J., M. D. Craighead, et al. (2001).	Agronomy New Zealand 31: 71-80.	Effects of rate and form of N fert applied to potato crop	Form of N fertiliser had no effect. Foliar fertilisers had not effect. Inhibitor reduced leaching by 30% with increased soil-NH4 at harvest and increased uptake by cover crop. Increased N application increased N leaching.	Waikato	Ν	Fertil	liser use
A38 Pasture production gains from strategic winter nitrogen applications on a North Island sheep and beef hill country farm.	Puha, M. R., W. M. King, et al. (2008).	Proceedings of the New Zealand Grassland Association 70: 117-121.	Explore winter application of N fertiliser in Waikato hill-country to improve production	Response aspect dependent. Leachate N concentration depended on aspect and slope - less consistent for steep northerly slopes	Waikato	Ν	Fertil	liser use

Id Title B22 Environmental impacts of different nitrogen inputs on dairy farms and implications for the Resource Management Act of New Zealand.	Author (Year) Ledgard, S. F., J. R. Crush, et al. (1998).	Reference Environmental Pollution 102(SUPPL. 1): 515-519.	Objective / Study aim Determine N inputs and losses from a Hamilton farmlet receiving fertiliser at rates from 0 - 400 kg N/ha/yr.	Findings Nitrate leaching up to 152 kg N/ha/yr with nitrate conc increasing with N application. NZ data is compared with European farm data. RMA implications discussed.	Location Waikato	N/P Topic N Fertiliser use
^{B23} Influence of time of application on the utilization of nitrogen fertilizer by asparagus, estimated using 15N.	Ledgard, S. F., J. A. Douglas, et al. (1992).	Plant and Soil 147(1): 41-47.	Determine the effect of N fertiliser on asparagus production	12% response to fertiliser only in the first of three years. No significant effect observed due to rate or timing.	Waikato	 N loss processes Fertiliser use
^{B30} Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application.	. ,	Journal of Agricultural Science 132(2): 215-225.	Study N flows within a Waikato dairy farmlet affected by N fertiliser and imported maize silage	Maize supplementation improved N efficiency and reduced N losses compared to application of N fert. Application of N fertiliser is associated with reduced N fixation. 0N farmlet most N efficient with milk production 83% of 400N farmlet	Waikato	^N Suppl feeds Fertiliser use
^{B36} Nitrogen inputs and losses from New Zealand dairy farmlets, as affected by nitrogen fertilizer application: Year one.	.	Plant and Soil 181(1): 65-69.	Study N flows within a Waikato dairy farmlet affected by N fertiliser (year 1 only)	Increased N fert associated with: 1) increased grass growth and lower drainage. 2) Increased nitrate conc in 400N leachate. 3) reduced N fixation in 400N treatment.	Waikato	N Fertiliser use
^{H04} Effect of regular irrigation with dairy farm effluent on soil organic matter and soil microbial biomass.	Barkle, G. F., R. Stenger, et al. (2000).	Australian Journal of Soil Research 38(6): 1087-1097.	Study of DFE irrigation over several years on SOM and microbial biomass	For sustainable use without N leaching gradually increasing mineralisation from increased SOM should be considered when applying N fertiliser	Waikato	N Fertiliser use
¹⁰³ Impact of rate of nitrogen fertiliser application on nitrate leaching from grazed dairy pastures.	Ledgard, S F, Sprosen, M S and Brier, G J, (1996).	understanding chemical movement in soils: Significance in relation to water quality and efficiency of fertiliser use. (Eds L D Currie and P Loganathan). Occasional report No. 9. Fertilizer and Lime Research Centre, Massey	Impacts of rate of N fertiliser application on N leaching	Nitrate N leaching varies with N fertliser application; NH4+ remains consistently low. 400N of fertliser has a marked effect on N leached double that of the 200N applied.	Waikato	^N Fertiliser use
¹⁰⁶ Groundwater nitrate levels under grazed dairy pastures receiving different rates of nitrogen fertiliser.	Ledgard, S F, Selvarajah, N, Jenkinson, D and Sprosen, M S, (1996).	Universitv. Palmerston North. New In: Recent developments in understanding chemical movement in soils: Significance in relation to water quality and efficiency of fertiliser use. (Eds L D Currie and P Loganathan). Occasional report No. 9. Fertilizer and Lime Research Centre, Massey Universitv. Palmerston North. New	The effect of amount of N fertiliser applied on groundwater water nitrate levels under grazed dairy pastures	200 N farmlet leaches slightly more that the 0 N farmlet. Leaching from the 400 N farmlets were greater with N conc in drainage well in excess of 11.3 mg/L (drinking guidelines)	Waikato	N Fertiliser use

- se
- ls se se
- se
- se se

Id 135	Title Management strategies to minimise nitrate leaching from arable crops.	Tabley, R N Gillespie and R F Zyskowski, (2007).	0 0	management effects on annual losses from crop rotations	Findings N losses varied widely depending on fertiliser rate applied, irrigation, winter rainfall and crops grown.	Location Canterbury, SI	N/P N	Topic Fertiliser use
154	Nitrogen fertiliser advice –what progress can we make?.	(2011).	the nutrient manager. (Eds L.D. Currie	areas of possible improvement in N	Focus areas: 1) Better synthesis and use of existing knowledge. 2) Decision support tools. 3) Environmental farm monitoring for decision support. 4) Focus on critical periods	•	Ν	Fertiliser use

WRC literature survey - N & P loss from land to water Published Papers - Fertiliser form

phospho	orus fertilizer form affects orus loss to waterways: a catchment study.	Author (Year) McDowell, R. W., R. P. Littlejohn, et al. (2010).	Reference Soil Use & Management 26(3): 365- 373.	Objective / Study aim A paired sheep grazed catchment study to determine differences in P losses to waterways arising from P fertiliser form.	Findings Where appropriate climatic and soil conditions exist RPR can be used to reduce P losses to streams	Location SI	N/P		pic liser form
overlan receivin either si	al phosphorus losses in d flow from pastoral soils ng long-term applications of uperphosphate or reactive ate rock.	McDowell, R. W., R. M. Monaghan, et al. (2003).	New Zealand Journal of Agricultural Research 46(4): 329-337.	Study the effect of long term application of superphosphate or RPR on P loss by overland flow.	Soluble P fertilisers present incidental risk of greater P loss. If good management practice is observed the differences between RPR and superphosphate use is minimal	SI	Ρ	Fertil	liser form
soils of West C	the Inchbonnie catchment, oast, New Zealand: II. ting for losses by different	McDowell, R. W. (2008).	New Zealand Journal of Agricultural Research 51(3): 307-316.	Study of P loss processes from dairy pasture to Lake Brunner a region of high rainfall.	Amount and form of P loss measured.Significant processes identified. Mitigation management practices discussed.	SI		Optir test F	esses nal soil
options	ion of two management to improve the water quality of runner, New Zealand.	McDowell RW (2010)	New Zealand Journal of Agricultural Research 53:59-69.	Evaluation of two management options to improve lake water quality	Use of RPR instead of superphosphate decreases P losses. Use of alum on west coast pastures ineffective. May have been washed off	SI			liser form rbents
manage	tive fertilisers and ement to decrease incidental orus loss.	McDowell RW, Catto W (2005)	Environmental Chemistry Letters 2:169-174	application and model potential losses throughout the year	surface runoff is directly related to the	Glenmaru & Invermay, SI	Ρ	Fertil	liser form
reactive	g-term effectiveness of phosphate rock as a ate fertiliser for New Zealand s.	Sinclair A, Dyson CB, Shannon PW (1990)	Proceedings of the New Zealand Grassland Association 51:101-104.	Reported results from several NZ field trials comparing PR with TSP	RPR is recommended where rainfall is > 800mm and soil pH less than 6.0. There is a lag time of effectiveness of about four years.	NZ wide including Waikato	Ρ	Fertil	liser form

- Title ld
- ¹¹¹ Potential losses of phosphorus and nitrogen in runoff and drainage from pastoral soils applied with superphosphate and reactive phosphate rock.

Author (Year) M L Nguyen, B F Quin and J P S Sukias, (2002).

Reference

L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.

Objective / Study aim

Findings In: Dairy farm soil management. (Eds Investigate the effect of SSP and RPR SSP is more susceptible to losses of Waikato on potential losses of P in runoff and DRP and PP in simulated runoff than drainage from pastures with long term RPR. P application history

Location

N/P Topic P Fertiliser form

WRC literature survey - N & P loss from land to water Published Papers - Optimal soil test P

Id Title A02 Phosphorus of soils in riparian and non-riparian wetland and buffer strips in the Waikato area, New Zealand.	Author (Year) Aye, T. M., M. L. Nguyen, et al. (2006).	Reference New Zealand Journal of Agricultural Research 49(3): 349-358.	Objective / Study aim Investigation of P release processes in riparian buffer strips	Findings Soils with high Olsen P may have high P loss as subsurface flow			Topic Optimal soil test P Riparian management
D015 Phosphorus export from an agricultural watershed: Linking source and transport mechanisms.	McDowell, R., A. Sharpley, et al. (2001).	Journal of Environmental Quality 30(5): 1587-1595.	Identify factors affecting streamflow DRP & TP in an agricultural catchment	Factors: Erosion, soil P conc. And channel sediment P sorption	SI	Ρ	Erosion Optimal soil test P
D033 Estimating phosphorus loss from New Zealand grassland soils.	McDowell, R. W. and L. M. Condron (2004).	New Zealand Journal of Agricultural Research 47(2): 137-145.	Model P loss from grasslands soils using measured soil chemical properties	Surface P runoff losses are greater for soils of high Olsen P and low ASC	SI	Ρ	Optimal soil test P
D050 Soil phosphorus concentrations to minimise potential P loss to surface waters in Southland.	McDowell, R. W., R. M. Monaghan, et al. (2003).	New Zealand Journal of Agricultural Research 46(3): 239-253.	Determine P losses from several Southland soils over a range of soil Olsen P concentrations	Manure or fert applic increased Olsen P and P in overland flow. P loss dominated by pedological origin. Olsen P values inducing P loss > 0.02 mg/L (env limit) in overland flow ranged from 5 - 51.	SI	Ρ	Optimal soil test P
D080 Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.	McDowell, R. W. and R. J. Wilcock (2007).	Journal of Environmental Quality 36(2): 540-548.	Quantify P loss to a stream in a dairy catchment	Modelled P losses to establish P sources: topsoil by overland flow - maybe lanes. Riparian protection and management of soil P recommended	SI		Critical source areas Riparian management Races Optimal soil test P
D099 Soil quality monitoring in New Zealand: trends and issues arising from a broad-scale survey.	Sparling, G. and L. Schipper (2004).	Agriculture Ecosystems & Environment 104(3): 545-552.	Survey of soil quality throughout NZ	80% soil properties within acceptable range. Compaction widespread. C depleted under cropping. Excess P under cropping and dairy.	Not specified NZ wide review	N&P	Optimal soil test P

lc E1		Author (Year) McDowell, R. W. (2008).	Reference New Zealand Journal of Agricultural Research 51(3): 307-316.	Objective / Study aim Study of P loss processes from dairy pasture to Lake Brunner a region of high rainfall.	Findings Amount and form of P loss measured.Significant processe identified. Mitigation managem practices discussed.
G1	⁶ Measurement and modelling of runoff and phosphate movement from seasonally dry hill-country pastures.	Gillingham AG, Gray MG (2006)	New Zealand Journal of Agricultural Research 49:233-245.	Model the movement of P in dry hill country pasture	P loss from soil by overland flo directly related to soil P concer

Location SI

cesses agement N/P Copic P P loss processes Optimal soil test P Fertiliser form

nd flow is Hawkes Bay boncentration

P Optimal soil test P

WRC literature survey - N & P loss from land to water Published Papers - Inhibitors

Id A11	Title Reducing nitrate leaching losses from a Taupo pumice soil using a nitrification inhibitor eco-n.	Author (Year) Cameron, K. C., H. J. Di, et al. (2007).	Reference Proceedings of the New Zealand Grassland Association 69: 131-135.	Objective / Study aim Evaluatiion of eco-N effectiveness in Taupo catchment	Findings Eco-N reduced nitrate leaching by 23 to 32% (mean: 27%)	Location Taupo	N/P N	Topic Inhibitors	
A33	Soil N process inhibitors alter nitrogen leaching dynamics in a pumice soil.	Menneer, J. C., S. Ledgard, et al. (2008).	Australian Journal of Soil Research 46(4): 323-331.	Investigate the effect of soil N process inhibitors on the fate of urine-N in pumice soil	DCD & 4-MP reduce leaching by 59%. Agrotain reduced NH3 emissions by 64% increasing medium term leaching losses. Agrotain-DCD exacerbated N losses.	Taupo	Ν	Inhibitors	>
A43	Effect of rate and form of dicyandiamide application on nitrate leaching and pasture production from a volcanic ash soil in the Waikato.	Sprosen, M. S., S. F. Ledgard, et al. (2009).	New Zealand Journal of Agricultural Research 52(1): 47-55.	Examine effects of granular and liquid application of DCD	DCD in both liquid and granular forms proved effective in reducing N leaching from urine.	Waikato	Ν	Inhibitors	\$
A46	Reducing NH3, N2O and NO3N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers.	Zaman, M., M. L. Nguyen, et al. (2008).	Biology and Fertility of Soils 44(5): 693-705.	Reduction of pasture N losses using urease / nitrification inhibitors	Using both Agrotain and DCD together will potentially reduce N losses.	Ruakura, Waikato	Ν	Inhibitors	>
A53	Effect of timing and formulation of dicyandiamide (DCD) application on nitrate leaching and pasture production in a Bay of Plenty pastoral soil.	Menneer, J. C., M. S. Sprosen, et al. (2008).	New Zealand Journal of Agricultural Research 51(3): 377-385.	Investigate effects of timing and formulation of DCD application on nitrate leaching	Form (liquid versus granular) has no effect. For greatest benefit both autumn and winter applications are recommended.	Bay of Plenty	Ν	Inhibitors	>
B28	A novel concept to reduce nitrogen losses from grazed pastures by administering soil nitrogen process inhibitors to ruminant animals: A study with sheep.	Ledgard, S. F., J. C. Menneer, et al. (2008).	Agriculture, Ecosystems and Environment 125(1-4): 148-158.	Investigate reduction of N losses by direct administraton of DCD to ruminants (sheep).	Direct administration of N process inhibitors to grazing ruminents has potential to reduce N losses from urine patches.	Not specified	Ν	Inhibitors	\$

Id 140	Title Farmers taking control of their future: research into minimising nitrogen and phosphorus from pasture land into Rotorua lakes.	Author (Year) Stewart Ledgard, A Ghani, M Redding, M Sprosen, S Balvert and D Smeaton, (2008).	Reference In: Carbon and nutrient management in agriculture. (Eds L.D. Currie and L.J. Yates). Occasional Report No. 21. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Objective / Study aim Summary of research undertaken to develop pratical mitigations for N and P losses to Rotorua lakes	Findings DCD application reduced N losses 15 - 25% and nil winter grazing, 34 - 42% Hay bale filter dams did not reduce P losses due to their rapid degradation
142	Effectiveness of dicyandiamide in reducing nitrogen leaching losses from two contrasting soil types under two rainfall regimes – A lysimeter study .	Mark Shepherd, B Welten and S Ledgard, (2009).	In: Nutrient management in a rapidly changing world. (Eds L.D. Currie and C.L. Lindsay). Occasional Report No. 22. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Effectiveness of DCD in relation to soil type and rainfall	Effectiveness varied from 34-54% reducing with increasing rainfall. More effective on Horotiu soils than Waikare clays
143	Winter grazing of a forage crop; effects on nitrate leaching .	Mark Shepherd, M Sprosen, S Ledgard and D Smeaton, (2009).	In: Nutrient management in a rapidly changing world. (Eds L.D. Currie and C.L. Lindsay). Occasional Report No. 22. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Quantify nitrate losses following grazing of a winter forage crop and measure the effect of DCD application	The risk of leaching N when winter grazing forage crops is high. 52% of leaching attributable to forage crop and winter fallow. DCD reduced total N leaching by up to 24%
149	Mitigating nitrate leaching in dairy systems – which periods of urine deposition should we be targeting?.	Mark Shepherd, P Phillips, V Snow and C Glassey, (2010).	 In: Farming's future: Minimising footprints and maximising margins. (Eds L.D. Currie and C.L. Christensen). Occasional Report No. 23. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 	Determine the critical period for DCD application to pasture	Urine deposited in March poses as great or greater a risk of leaching than urine deposited in May or June. Need to extend this work to additional soil types and climates
152	Targeting DCD at critical source areas as a nitrogen loss mitigation strategy.		the nutrient manager. (Eds L.D. Currie and C L. Christensen). <u>http://flrc.massey.ac.nz/publications.ht</u> ml. Occasional Report No. 24. Fertilizer and Lime Research Centre, Massey University, Palmerston North,	and identify campsites on hill	N loss greater on strip grazed pastures. DCD reduced N leaching. Both nitrate and NH4+ leached down the profile. GPS tracking of cows did not identify obvious campsites
153	The challenge of late summer urine patches in the Waikato region.	Mark Shepherd, P Phillips and V Snow, (2011).		Determine the critical period for DCD application to pasture - include info on the interaction of timing & rate of urine N application	leaching arising from urine deposited

Location losses 15 - Rotorua , 34 - 42% t reduce P

- N/P Topic N Inhibitors Restricted grazing
- 34-54% Waikato infall. More nan

N Inhibitors

- n winter Taupo h. 52% of age crop luced total
- Waikato oses as aching than June. Need ional soil
- ed Taupo eaching. ched down f cows did ites
- ibution to N Waikato deposited ation

- N Inhibitors Forage crop management
- N Inhibitors
- N Inhibitors Forage crop management
- N Inhibitors

WRC literature survey - N & P loss from land to water

Published Papers - Pugging

Id Title ^{B57} Animal treading stimulates denitrification in soil under pasture.	Author (Year) Menneer, J. C., S. Ledgard, et al. (2005).	Reference Soil Biology and Biochemistry 37(9): 1625-1629.	Objective / Study aim Study of the effects of treading wet soil on denitrification	Findings Treading reduces soil aeration, reduces plant growth. This with the resultant increase in NH4+ and NO3- stimulates denitrification	Location Waikato		Topic Stock management Pugging N loss processes
 ^{C01} Impact of cattle treading on hill land: 2. Soil physical properties and contaminant runoff. 	Nguyen, M.L., G.W. Sheath et al. (1998).	New Zealand Journal of Agricultural Research 41(2): 279-290	Investigation of the effects of a 2-3 winter treading event on soil physical properties and nutrient runoff in hill- country	More N, P and sediment observed in runoff following simulated rainfall. These effects disappeared within 6 months.	Whatawhata, Waikato	N&P	Pugging
D006 Do aggregation, treading, and dung deposition affect phosphorus and suspended sediment losses in surface runoff?	Cournane, F. C., R. W. McDowell, et al. (2010).	Australian Journal of Soil Research 48(8): 705-712.	Effects of aggregation, dung and treading on P loss by surface runoff	Losses: Dung > Treading. Pallic / Gley soils more vulnerable than Melanic / Brown soils. P load greater in light low density aggregates		Ρ	Pugging
D007 Effects of cattle treading and soil moisture on phosphorus and sediment losses in surface runoff from pasture.	Cournane, F. C., R. W. McDowell, et al. (2010).	New Zealand Journal of Agricultural Research 53(4): 365-376.	Study how treading affects the loss of P and SS in surface runoff for four soils	DRP greater in runoff following drier conditions but less likely. PP losses with treading of more concern. Care is required under wet winter-spring conditions		Ρ	Pugging
D038 Effects of deer grazing and fence-line pacing on water and soil quality.	McDowell, R. W., J. J. Drewry, et al. (2004).	Soil Use & Management 20(3): 302- 307.	Study of the effects of red deer grazing and fence line pacing on N & P loss to surface waters.	N unlikely to have a significant impact compared to P. Management strategies required to mitigate P losses.	SI	N&P	Pugging
^{D056} Water and soil quality in an Otago deer farm.	McDowell, R. W. and R. J. Paton (2004).	Proceedings of the New Zealand Grassland Association 66: 187-193.	Study of the impacts to soil and water arising from fence-line pacing and wallowing by deer.	In other than dry years (rainfall < 20% normal) mitigations targeting fencle- line pacing and wallowing are required to protect soil and surface water quality.		Ν	Pugging

	Title Cattle treading and phosphorus and sediment loss in overland flow from grazed cropland.	Author (Year) McDowell RW, Drewry JJ, Muirhead RW, Paton RJ (2003c)	Reference Australian Journal of Soil Research 41:1521-1532.	Objective / Study aim Study of overland P loss from grazed cropland	Findings Treading increased overland f Grazing increased TP loss by attributed to dung and soil disturbance. Wintering stock of crops increases P loss especia particulate form
	Restricting cattle treading to decrease phosphorus and sediment loss in overland flow from grazed cropland.	McDowell RW, Drewry JJ, Muirhead RW, Paton RJ (2005)	Australian Journal of Soil Research. 43:61-66.	Study the effects of restricted grazing of forage brassica crops on soil properties and P loss	Restricted grazing during wint beneficial for minimizing conta loss

Location SI

N/P Topic
P Pugging

nd flow. by 250%

ck on forage ecially in

vinter is SI ^P Pugging pontaminant

WRC literature survey - N & P loss from land to water Published Papers - Stock management

Id Title A04 Nitrate leaching and productivity of some farming options in the Lake Taupo catchment.	Author (Year) Betteridge, K., C. J. Hoogendoorn, et al. (2007).	Reference Proceedings of the New Zealand Grassland Association 69: 123-129.	Objective / Study aim Investigate N leaching potential of new and existing farm systems in Taupo catchment	Findings Strategic destocking over winter can greatly reduce N leaching.	Location Taupo	Topic Stock management
A05 Reduced nitrate leaching from livestock in a large lake catchment i New Zealand.	Betteridge, K., S. F. Ledgard, et al. (2005).	Precision livestock farming '05. S. Cox (Ed.). Wageningen, Wageningen Academic Publishers: 49-56.	Investigate nitrate leaching potential of cropping and drystock farm systems in Taupo catchment	All year grazing has greater leaching losses that those of no winter grazing systems	Taupo	Stock management
A08 Simulation of mitigation strategies to reduce nitrogen leaching from graze pasture.		Proceedings of the New Zealand Grassland Association 69: 145-151.	N mitigation strategies modelled at the paddock level using EcoMod for a farm in Lake Taupo catchment	Recomendations: graze steers not heifers, use salt diuretic, use DCD. Needs to be scaled up to farm level	Taupo	Stock management
A15 Effects of dairying on water quality of lowland streams in Westland and Waikato.	f Davies-Colley, R. J. and J. W. Nagels (2002).	Proceedings of the New Zealand Grassland Association 64: 107-114.	Survey of water quality of eight lowland streams	Area specific discharge correlates with land-use. Nutrient concentration is dependent on water flow.	Westland, Waikato	Stock management
A17 Effects of sheep grazing episodes o sediment and nutrient loss in overla flow.		Australian Journal of Soil Research 42(2): 213-220.	Investigate the effect of sheep grazing on nutrient runoff on hill-country	Particulate nutrients correlated to % bare ground. Grazing reduces infiltration rate, increases runoff and increases loads post-grazing	Whatawhata	P loss processes Stock management
A19 Land use impacts on nutrient export the Central Volcanic Plateau, North Island. (Special issue: Land use impacts).	in Hamilton, D. (2004).	New Zealand Journal of Forestry 49(4): 27-31.	Review of the effects of land-use change from forestry (Rotorua, Taupo)	Discuss age of stream inflows, mitigation options	Taupo, Rotorua	Stock management

Id Title A20 Soil C and N sequestration and fertility development under land recently converted from plantation forest to pastoral farming.	Author (Year) y Hedley, C. B., B. H. Kusumo, et al. (2009).	Reference New Zealand Journal of Agricultural Research 52(4): 443-453.	Objective / Study aim Development of pasture following conversion from forestry	Findings In first the five years N accumulated at 0.45 t/ha/year to 150 mm depth. Implies immobilisation of N into organic matter.	Location Taupo, Rotorua	N/P N	Topic Stock management
A28 Control of pollutants using stand-off pads containing different natural materials.	Luo, J., A. Donnison, et al. (2006).	Proceedings of the New Zealand Grassland Association 68: 315-320.	Investigate standoff pad materials for retention of N	Bark and sawdust pads retained about 60% of deposited excreta N	In laboratory	Ν	Stock management
^{B18} Nitrogen cycling in low input legume- based agriculture, with emphasis on legume/grass pastures.	Ledgard, S. F. (2001).	Plant and Soil 228(1): 43-59.	Discuss N flows with respect to legume based N fixation.	Dietary management and stock management, methods for improving N efficiency in legume based farming systems are discussed.	Not specified - Review	Ν	Suppl feeds Stock management
^{B57} Animal treading stimulates denitrification in soil under pasture.	Menneer, J. C., S. Ledgard, et al. (2005).	Soil Biology and Biochemistry 37(9): 1625-1629.	Study of the effects of treading wet soil on denitrification	Treading reduces soil aeration, reduces plant growth. This with the resultant increase in NH4+ and NO3- stimulates denitrification	Waikato		Stock management Pugging N loss processes
^{D076} Potential waterway contamination associated with wintering deer on pastures and forage crops.	McDowell, R. W. and D. R. Stevens (2008).	New Zealand Journal of Agricultural Research 51(3): 287-290.	Determine P losses arising from winter grazing of pasture and forage crops	Contaminant concentrations increased with grazing, the more so when grazing forage crops. DRP similar for pasture and forage crops. In general contaminants exceeded national guidelines for lowland water quality	SI	Ρ	Stock management
E10 Phosphorus and sediment loss in a catchment with winter forage grazing of cropland by dairy cattle.	McDowell, R. W. (2006).	Journal of Environmental Quality 35(2): 575-583.	Study of the effects of winter forage grazing of dairy cattle on P loss processes	Compared to clearing up of stream banks P losses on moderately sloping land were minimal. SS load increased by 75%	Balclutha, SI	Ρ	Stock management Fencing waterways
¹¹³ Effect of stocking rate on leaching of nitrate and associated nutrients.	M S Sprosen, S F Ledgard, S B Lindsey and K A Macdonald, (2002).	In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Study the effect of stocking rate on N leaching losses	Stocking rate may be a poor indicator on N leaching. Where cows are dried of and culls removed earlier reduced pasture intake and reduced fewer N deposits may influence the amount of N leached more than stocking rate.	Waikato	Ν	Stock management

Id 119	Title Nitrogen flows and losses in dairy farms in New Zealand and the UK: effects of grazing management.	Author (Year) D R Chadwick, S F Ledgard and L Brown, (2002).	Reference In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Objective / Study aim A comparison of NZ and UK housing- grazing management and consequential N losses	5 51	Location NZ and UK - Review	N/P N	Topic Stock management
120	Nitrate leaching in grazing systems and management strategies to reduce losses.	Stewart F Ledgard and J C Menneer (Invited presentation) (2005).	In: Developments in fertiliser application technologies and nutrient management. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 18. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Review of mitigation measures to reduce nitrate leaching from grazed pastures	leaching by up to 60%. Stock type: cows > deer = sheep. Fertiliser has minimal effect unless excessive or untimely. Other strategies to be evaluated include inhibitors, low-N- feeds. Requires whole system	Review - NZ wide including the Waikato		Stock management
125	Nitrogen leaching and whole-system efficiency as affected by dairy intensification and mitigation practices in the resource efficient dairying trial.	Stewart Ledgard, M Sprosen, A Judge, S Lindsey, R Jensen and D Clark, (2006).	In: Implementing sustainable nutrient management strategies in agriculture. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 19. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Evaluate the environmental consequences of more intensive dairy farming	approach. N fert (170 kg N/ha) with increased stocking rate increased milk production by 20%; doubled nitrate loss. Using maize silage reduced losses kg NO3-N / kg MS; include land to grow maize and whole system efficiency is reduced	Waikato		Suppl feeds Stock management Restricted grazing
147	Using loafing pads to capture urine from dairy cows in late lactation whilst maintaining pasture intake, milk production and animal welfare .	Chris Glassey, C E F Clark, K L M McLeod, P Gregorini, D A Costall, K Betteridge and J G Jago, (2010).	 In: Farming's future: Minimising footprints and maximising margins. (Eds L.D. Currie and C.L. Christensen). Occasional Report No. 23. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand. 	Investigate the effect on urination events of 16 hr removal of cows from pasture to a standoff pad	Urinations on pasture and laneways was reduced from 85% (control) to 50 - 56% when restricted grazing	Waikato	Ν	Stock management
J03	Improving the economic and environmental performance of a New Zealand hill country farm catchment: 3. Short term outcomes of land use change.	Dodd, M.B.; Quinn, J.M.; Thorrold, B.S.; Parminter, T.G.; Wedderburn, M.E. (2008).	New Zealand Journal of Agricultural Research 53: 155-169.	performance indicators on implementing land use changes to	Reforestation and riparian zone development were undertaken with intensification of the remainder of the farm. Improving indicators were sediment (76%) and phosphorus	Whatawhata		Riparian management Stock management

(62%).

WRC literature survey - N & P loss from land to water Published Papers - Restricted grazing

Id Title B07 An analysis of environmental and economic implications of nil and restricted grazing systems designed to reduce nitrate leaching from New Zealand dairy farms. I. Nitrogen losses.	(2001).	Reference New Zealand Journal of Agricultural Research 44(2-3): 201-215.	Objective / Study aim Examine effects of nil and restricted grazing on N flows and losses	Findings Restricted grazing may be beneficial in reducing nitrate leaching losses. Nil grazing systems have higher losses arising from gaseous N loss.	Location NZ wide review	Topic Restricted grazing
^{D037} Restricting the grazing time of cattle to decrease phosphorus, sediment and E-coli losses in overland flow from cropland.	McDowell, R. W., J. J. Drewry, et al. (2005).	Australian Journal of Soil Research 43(1): 61-66.	Study of the effects of restricted grazing of brassica crops on soil physical properties and P loss by overland flow.	Restricted grazing of forage crops in winter was beneficial for reducing contaminant loss.	SI	Restricted grazing Forage crop management
D041 Phosphorus, nitrogen and sediment losses from irrigated cropland and pasture grazed by cattle and sheep.	McDowell, R. W. and D. J. Houlbrooke (2008).	Proceedings of the New Zealand Grassland Association 70: 77-83.	Determine N & P losses arising during grazing of irrigated forage plots by sheep and beef.	P loss due to irrigation events: 30% cattle, < 20% sheep N & P losses: cattle > sheep Urine patch > Non urine patch areas Focus: Reduce irrigation induced overland flow, adopt restricted grazing with stand-off pad	North Otago, SI	Irrigation Restricted grazing Forage crop management
¹²⁵ Nitrogen leaching and whole-system efficiency as affected by dairy intensification and mitigation practices in the resource efficient dairying trial.	Stewart Ledgard, M Sprosen, A Judge, S Lindsey, R Jensen and D Clark, (2006).	In: Implementing sustainable nutrient management strategies in agriculture. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 19. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Evaluate the environmental consequences of more intensive dairy farming	N fert (170 kg N/ha) with increased stocking rate increased milk production by 20%; doubled nitrate loss. Using maize silage reduced losses kg NO3-N / kg MS; include land to grow maize and whole system efficiency is reduced	Waikato	Suppl feeds Stock management Restricted grazing
¹⁴⁰ Farmers taking control of their future: research into minimising nitrogen and phosphorus from pasture land into Rotorua lakes.	Stewart Ledgard, A Ghani, M Redding, M Sprosen, S Balvert and D Smeaton, (2008).	In: Carbon and nutrient management in agriculture. (Eds L.D. Currie and L.J. Yates). Occasional Report No. 21. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Summary of research undertaken to develop pratical mitigations for N and P losses to Rotorua lakes	DCD application reduced N losses 15 - 25% and nil winter grazing, 34 - 42% Hay bale filter dams did not reduce P losses due to their rapid degradation	Rotorua	Inhibitors Restricted grazing
¹⁴⁵ Controlling nitrogen and phosphorus loss from dairy farms using restricted grazing practices.	Christine Lindsay, J A Hanly, M J Hedley, D J Horne, P J Schreurs and H B Toes, (2009).		A study quantifying the differences between normal and restricted grazing on mole tile dairy grazed paddocks	Drainage N concentrations decreased throughout the drainage season. Soil N at the beginning of the drainage season influences N loss more than three spring grazings during the drainage season.	Manawatu	Restricted grazing

Id 146	Title Using duration-controlled grazing to reduce nitrate-N leaching from dairy farms.	Author (Year) Christine L Christensen, J A Hanly, M J Hedley and D J Horne, (2010).	Reference In: Farming's future: Minimising footprints and maximising margins. (Eds L.D. Currie and C.L. Christensen). Occasional Report No. 23. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Objective / Study aim A study quantifying the differences between normal and restricted grazing on mole tile dairy grazed paddocks	Findings Duration controlled grazing reduces N losses - Differences are more evident early in the drainage season consistent with reduced urine-N deposits in summer and autumn		Topic Restricted grazing
159	Nitrate leaching and pasture accumulation during two years of duration-controlled grazing in the Manawatu.	Christine Christensen, M J Hedley, J A Hanly and D J Horne, (2011).	the nutrient manager. (Eds L.D. Currie	A study quantifying the differences between normal and restricted grazing on mole tile dairy grazed paddocks	Restricted grazing achieved over two seasons a 50% reduction in leaching. However in year two reduced pasture accumulation was observed possibly due to less excreta deposits	Manawatu	Restricted grazing

WRC literature survey - N & P loss from land to water Published Papers - Irrigation

	Title Influence of long-term irrigation on the distribution and availability of soil phosphorus under permanent pasture.	· · · · · ·	Reference Australian Journal of Soil Research 44(2): 127-133.	irrigation on the distribution of P in soil profile		Location Winchmore, SI	N/P	Topic Irrigation
		McDowell, R. W. and D. J. Houlbrooke (2008).	Proceedings of the New Zealand Grassland Association 70: 77-83.	grazing of irrigated forage plots by sheep and beef.	P loss due to irrigation events: 30% cattle, < 20% sheep N & P losses: cattle > sheep Urine patch > Non urine patch areas Focus: Reduce irrigation induced overland flow, adopt restricted grazing with stand-off pad	North Otago, SI		Irrigation Restricted grazing Forage crop management
112		L M Condron, G S Toor, H J Di, K C Cameron and T Hendry, (2002).	In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	from a grassland soil under flood irrigation over three years	Losses of DRP very small compared to total P. Losses were greatest from soil that received dairy shed effluent. Most P in particulate and dissolved forms thought to be predominantly organic	Canterbury, SI	Ρ	Irrigation
	increase nitrogen leaching from		In: Dairy farm soil management. (Eds L D Currie and P Loganathan). Occasional report No. 15. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	FDE application on N & P losses from pumice soils	Leaching is more related to pasture N use efficiency than the annual volume of drainage. Nitrate loss: Eff > IrrEff > Irr = NonIrr	Taupo		Irrigation Effluent management

WRC literature survey - N & P loss from land to water Published Papers - Sorbents

Title The effectiveness of industrial by- products to stop phosphorous loss from a Pallic soil.	Author (Year) McDowell, R. W. (2004).	Reference Australian Journal of Soil Research 42(7): 755-761.	Objective / Study aim Investigation of industrial by-products as P sorbing agents in a pallic soil	Findings Some were toxic to plants. None leached heavy metals. Melter slag and bottom ash considered effective	Location SI	N/P P	Topic P sorbents
The effectiveness of coal fly-ash to decrease phosphorus loss from grassland soils.	McDowell, R. W. (2005).	Australian Journal of Soil Research 43(7): 853-860.	Investigate the suitability of using fly ash as a P sorbing agent for a range of soil types	Fly ash has a liming effect - induced C & P mineralisation. Inorganic P increased in labile fractions for 4 of the 6 soils. Not recommended for pastoral soils.	Huntly, Waikato	Ρ	P sorbents
Nitrogen transformation in a denitrification layer irrigated with dairy factory effluent.	Schipper, L. A. and A. McGill (2008).	Water Research 42(10-11): 2457- 2464.	Description of a treatment system designed to operate when constrained by land area	Bypass flow an issue rendering thicker denitrification layers ineffective. Not practical for large scale use	Waikato	Ν	N sorbents
	Schipper, L. A., W. D. Robertson, et al. (2010).	Ecological Engineering 36(11, Sp. Iss. SI): 1532-1543.		Bioreactors can be a cost effective means of reducing nitrate discharge to water bodies and are complementary to other agricultural management practices aimed at reducing nitrate losses.	Waikato	Ν	N sorbents
Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review.	Ballantine DJ, Tanner CC (2010)	New Zealand Journal of Agricultural Research 53:71-95.	A review to evaluate the effectiveness of a range of P sorbing materials for use in wetlands	Recommend: Porous materials or materials enriched with AI or Fe such as melter slag	Not specified		Wetlands P sorbents
·	Hanly JA, Hedley MJ, Horne DJ (2008)	Australian Journal of Soil Research 46:542-551.	Effectiveness of tephra for prevention of P loss from tile-drained land	Reduced P loss in winter of 45% compared to a standard mole and pipe drainage system	Balclutha, SI	Ρ	P sorbents

	Title The effectiveness of industrial by- products to stop phosphorus loss from a Pallic soil.	Author (Year) McDowell RW (2004)	Reference Australian Journal of Soil Research 42:755-761.		Findings Steel melter slag recommended - non toxic, neutral pH	Location SI	N/P P	Topic P sorbents
	Evaluation of two management options to improve the water quality of Lake Brunner, New Zealand.	McDowell RW (2010)	New Zealand Journal of Agricultural Research 53:59-69.	options to improve lake water quality	Use of RPR instead of superphosphate decreases P losses. Use of alum on west coast pastures ineffective. May have been washed off	SI		Fertiliser form P sorbents
	•	McDowell RW, Hawke M, McIntosh JJ (2007)	New Zealand Journal of Agricultural Research 50:503-510.	Evaluation of P socks containing steel melter slag for removal of P from a stream	Effective removal strategy at low flows but ineffective at high flows > 20 L/sec. More expensive than alum dosing. More cost effective strategy would be to use steel melter slag to prevent P loss to waterways from critical areas	Rerewhakaaitu	Ρ	P sorbents
	Management options to decrease phosphorus and sediment losses from irrigated cropland grazed by cattle and sheep.	McDowell RW, Houlbrooke DJ (2009)	Soil Use and Management 25:224-233.	cropland and management options	P loss greater from forage cropland than pasture. Irrigation management important as losses depend on soil moisture status. Restricted grazing and application of alum reduces P losses	SI		P sorbents Forage crop management
	•	McDowell RW, Sharpley AN, Bourke B (2008)	Journal of Environmental Quality 37:1575-1582.	Effectiveness of selective industrial by- products for prevention of P loss from tile-drained land		SI	Ρ	P sorbents
		Paul WJ, Hamilton DP, Gibbs MM (2008)	New Zealand Journal of Marine Freshwater Research 42:207-217.	Evaluation of alum application for reduction of internal nutrient loads in Lake Okaro.	Not successful due to dose rate, timing, P species conc. and the pH of the water column at time of application	Rotorua	Ρ	P sorbents
	, ,	James Sukias, C Tanner and L McKergow, (2006).	In: Implementing sustainable nutrient management strategies in agriculture. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 19. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	I I I I I I I I I I I I I I I I I I I	To be effective constructed wetlands should be 2-5% of catchment area; woodchip filters 1.2-2.4% of catchment area.	Waikato		Wetlands N sorbents

ld Title

Author (Year)

¹⁵⁷ Implementing on-farm P mitigations in Bob Longhurst, M Hawke, B Parker Rerewhaakitu catchment . and S Balvert, (2009).

Reference

changing world. (Eds L.D. Currie and on a catchment scale to assist farmers and implementation of mitigation C.L. Lindsay). Occasional Report No. minimise the environmental impact of measures such as filter strips, 22. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.

Objective / Study aim

In: Nutrient management in a rapidly Development of methods / strategies Identifcation of critical source areas farming on a lake

Findings

sediment traps and P-sorbents

Location

Rerewhakaaitu

N/P Topic N&P P sorbents Filter strips

WRC literature survey - N & P loss from land to water

Published Papers - Pasture species

ld	Title	Author (Year)	Reference	Objective / Study aim	Findings
A37	Influence of different forage grasses	Popay, A. J. and J. R. Crush (2010).	Grass and Forage Science 65(1): 28-	Determine effect of forage grasses on	Endophyte had no effect on uptake or
	on nitrate capture and leaching loss		37.	N updake and leaching loss	leaching. High aerial DM, large root
	from a pumice soil.				systems extending below 20cm
					increase N interception and reduce

Location

t on uptake or Not specified 1, large root w 20cm and reduce

leaching loss

N/P Topic N Pasture species

WRC literature survey - N & P loss from land to water

Published Papers - Races

ic D0 ⁻	Title ² Potential phosphorus and sediment loads from sources within a dairy farmed catchment.	Author (Year) Lucci, G. M., R. W. McDowell, et al. (2010).	Reference Soil Use & Management 26(1): 44-52.	Objective / Study aim Determine P loads from sources withn a dairy farmed catchment	Findings P loss: trough > crossing > ga pasture. Causal factors predic load identified: Olsen P, % ba ground, % saturation
D08	⁰ Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.	McDowell, R. W. and R. J. Wilcock (2007).	Journal of Environmental Quality 36(2): 540-548.	Quantify P loss to a stream in a dairy catchment	Modelled P losses to establis sources: topsoil by overland t maybe lanes. Riparian protec management of soil P recom

Location

edicting P bare N/P Topic

P Races
 Optimal soil
 test P

blish P SI ad flow tection and commended P Critical source areas
 Riparian
 management
 Races
 Optimal soil
 test P

WRC literature survey - N & P loss from land to water Published Papers - Retention dams

_		Title n-channel coarse sediment trap: Best nanagement practice.	Author (Year) Hudson HR (2002)	Reference Environmental Management Associates Ltd, Ministry of Agriculture and Forestry.	Objective / Study aim Description of BMP for design and operation of an in channel course sediment trap	Findings -	Location Not specified	N/P	Topic Retention dams
G	F	practices on water quality in the Otago	McDowell RW, McGrouther N, Morgan G, Srinivasan MS, Stevens DR, Johnson M, Copland R (2006)	Proceedings of the New Zealand Grassland Association 68:183-188	Quantify the effect of selected strategies in terms of improving soil and water quality on deer focus farms	Sediment trap reduces TP concentrations by 10%. Fencing off improved water quality	Otago & Southland, SI	Ρ	Retention dams Fencing waterways
G	c		Nguyen ML, Sukias JPS, Nagels JW, Reeves P (2002)	In: Dairy farm soil management (Currie LD, Loganathan P Eds.), Occasional Report No. 15, Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Study of the function of drainage ditches in attenuation of ammonium and phosphate	P in solution when introduced to the drain was reduced by 56% over a distance of 150m	Not specified	Ρ	Retention dams

Location	N/P	Торіс
Not specified	Р	Retention
		dams

WRC literature survey - N & P loss from land to water Published Papers - Forage crop management

Title Reduced nitrate leaching from livestock in a large lake catchment in New Zealand.	Author (Year) Betteridge, K., S. F. Ledgard, et al. (2005).	Reference Precision livestock farming '05. S. Cox (Ed.). Wageningen, Wageningen Academic Publishers: 49-56.	Objective / Study aim Investigate nitrate leaching potential of cropping and drystock farm systems in Taupo catchment	Findings Nitrate leaching from annual cropping > perennial cropping.	Location Taupo	N/P N	Topic Forage crop management
Effect of early season leaching on the amount and distribution of soil mineral nitrogen under a maize grain crop in Waikato.	Pearson, A. and L. Reynolds (2007).	Agronomy New Zealand 37: 29-36.	Determine extent of in-season N leaching from Waikato maize crops	N movement restricted to maize rooting zone. Following harvest in absence of crop uptake leaching will occur.	Waikato		Forage crop management
Restricting the grazing time of cattle to decrease phosphorus, sediment and E-coli losses in overland flow from cropland.	McDowell, R. W., J. J. Drewry, et al. (2005).	Australian Journal of Soil Research 43(1): 61-66.	Study of the effects of restricted grazing of brassica crops on soil physical properties and P loss by overland flow.	Restricted grazing of forage crops in winter was beneficial for reducing contaminant loss.	SI		Restricted grazing Forage crop management
Phosphorus, nitrogen and sediment losses from irrigated cropland and pasture grazed by cattle and sheep.	McDowell, R. W. and D. J. Houlbrooke (2008).	Proceedings of the New Zealand Grassland Association 70: 77-83.	Determine N & P losses arising during grazing of irrigated forage plots by sheep and beef.	P loss due to irrigation events: 30% cattle, < 20% sheep N & P losses: cattle > sheep Urine patch > Non urine patch areas Focus: Reduce irrigation induced overland flow, adopt restricted grazing with stand-off pad	North Otago, SI		Irrigation Restricted grazing Forage crop management
Management options to decrease phosphorus and sediment losses from irrigated cropland grazed by cattle and sheep.		Soil Use and Management 25:224- 233.	Study of overland P loss from grazed cropland and management options	P loss greater from forage cropland than pasture. Irrigation management important as losses depend on soil moisture status. Restricted grazing and application of alum reduces P losses	SI		P sorbents Forage crop management
Winter cover crops affect soil mineral N levels and nitrate leaching.	Scott Shaw and A Pearson, (2008).	In: Carbon and nutrient management in agriculture. (Eds L.D. Currie and L.J. Yates). Occasional Report No. 21. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Investigate the effect of cover crops of maize production and N losses		Hastings Otorohanga		Forage crop management

 Id Title ¹³⁹ Potential for maize to recycle leached soil nitrate. 	Author (Year) Jeff Reid and S R Shaw, (2008).	Reference In: Carbon and nutrient management in agriculture. (Eds L.D. Currie and L.J. Yates). Occasional Report No. 21 Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.		Findings Maize crops show substantial potential. However to do this without compromising production will require sophisticated tools.	Location Not relevant - In lab modelling	N/P Topic ^N Forage crop management
¹⁴³ Winter grazing of a forage crop; effects on nitrate leaching .	Mark Shepherd, M Sprosen, S Ledgard and D Smeaton, (2009).	In: Nutrient management in a rapidly changing world. (Eds L.D. Currie and C.L. Lindsay). Occasional Report No. 22. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Quantify nitrate losses following grazing of a winter forage crop and measure the effect of DCD application	The risk of leaching N when winter grazing forage crops is high. 52% of leaching attributable to forage crop and winter fallow. DCD reduced total N leaching by up to 24%	Taupo	 N Inhibitors Forage crop management
¹⁵² Targeting DCD at critical source areas as a nitrogen loss mitigation strategy.	-	In: Adding to the knowledge base for the nutrient manager. (Eds L.D. Currie and C L. Christensen). http://flrc.massey.ac.nz/publications.ht ml. Occasional Report No. 24. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.		N loss greater on strip grazed pastures. DCD reduced N leaching. Both nitrate and NH4+ leached down the profile. GPS tracking of cows did not identify obvious campsites	Taupo	^N Inhibitors Forage crop management

WRC literature survey - N & P loss from land to water

Published Papers - Arable

Id A14	Title Potential for nitrate leaching from different land uses in the Pukekohe area.	Author (Year) Crush, J. R., S. N. Cathcart, et al. (1997).	Reference Proceedings of the New Zealand Grassland Association 59: 55-58.	Objective / Study aim N leaching modelled from different land-uses in Pukekohe area	Findings Land use options ranked. Winter have higher N surplus than summ crops. Practices increasing leach were: high N fert, prolonged histo cultivation, no cover crops
A18	Winter nitrate leaching losses from three land uses in the Pukekohe area of New Zealand.	Francis, G. S., L. A. Trimmer, et al. (2003).	New Zealand Journal of Agricultural Research 46(3): 215-224.	Compare nitrate leaching losses from three different land-uses (dairy, winter potatoes, winter greens)	

Location

Winter crops Pukekohe n summer g leaching ed history of

N/P Topic

N Arable / hort Fertiliser use

/inter Pukekohe ter N fert N Arable / hort Fertiliser use

WRC literature survey - N & P loss from land to water Published Papers - Suppl feed

Id B18	Title Nitrogen cycling in low input legume- based agriculture, with emphasis on legume/grass pastures.	Author (Year) Ledgard, S. F. (2001).	Reference Plant and Soil 228(1): 43-59.	Objective / Study aim Discuss N flows with respect to legume based N fixation.	Findings Dietary management and stock management, methods for improving N efficiency in legume based farming systems are discussed.	Location Not specified - Review		Topic Suppl feeds Stock management
B30	Nitrogen inputs and losses from clover/grass pastures grazed by dairy cows, as affected by nitrogen fertilizer application.	Ledgard, S. F., J. W. Penno, et al. (1999).	Journal of Agricultural Science 132(2): 215-225.	Study N flows within a Waikato dairy farmlet affected by N fertiliser and imported maize silage	Maize supplementation improved N efficiency and reduced N losses compared to application of N fert. Application of N fertiliser is associated with reduced N fixation. 0N farmlet most N efficient with milk production 83% of 400N farmlet	Waikato	Ν	Suppl feeds Fertiliser use
125	Nitrogen leaching and whole-system efficiency as affected by dairy intensification and mitigation practices in the resource efficient dairying trial.	Stewart Ledgard, M Sprosen, A Judge, S Lindsey, R Jensen and D Clark, (2006).	In: Implementing sustainable nutrient management strategies in agriculture. (Eds L.D. Currie and J.A. Hanly). Occasional Report No. 19. Fertilizer and Lime Research Centre, Massey University, Palmerston North, New Zealand.	Evaluate the environmental consequences of more intensive dairy farming	N fert (170 kg N/ha) with increased stocking rate increased milk production by 20%; doubled nitrate loss. Using maize silage reduced losses kg NO3-N / kg MS; include land to grow maize and whole system efficiency is reduced	Waikato		Suppl feeds Stock management Restricted grazing

9.2 Ongoing Research

WRC literature survey - N & P loss from land to water New and Ongoing Research

ld F01	Use Y	Title SFF: Nitrogen management for environment accountability	Contact Person Sonia Whiteman	Lead Organisation Horticulture New Zealand	Project Objective Development of simple robust system(s) for measurement of nitrogen leaching in arable and horticultural production systems	Com
F02	Y	SFF: Targeted nitrogen mitigation	Jocelyn Reeve	Taupo Lake Care	Develop nitrogen leaching mitigation methods to sustain livestock farming within the Lake Taupo Catchment using targeted DCD application	
F03	Y	SFF: Grazing strategies and standoff use to minimise nitrogen dervied emissions from dairy farms	Jenny Jago	Stand-off Facility User Group	Develop alternative grazing and herd management strategies to reduce urine deposits on farmland and consequential N leaching	
F04	Y	SFF: Autumn winter drainage and N leaching under a cover crop following an irrigated potato crop	Monty Spencer	Potato Product Group, Horticulture New Zealand	Measure how effective a winter cover crop is at retaining and recycling the remaining nitrogen following an irrigated potato crop	
F08	Y	FRST: Redesigning nitrogen management	Hong J. Di	Lincoln University	Develop new nitrification inhibitor technology to reduce leaching from New Zealand dairy farms	
F09	Y	FRST: Delivering environmental solutions for sustainable productivity outcomes for NZ pastoral industries	Cecile de Klein	AgResearch	Provide farmer-friendly tools for measurement and mitigation of N and P losses to waterways. Develop frameworks for monitoring, adoption of BMPs with consideration for environmental, economic, social and cultural impacts	Recen under
Literature survey of nitrogen and phosphorus loss from land to water in the Waikato region						

Literature survey of nitrogen and phosphorus loss from land to water in the Waikato region New and Ongoing Research Prepared for Waikato Regional Council omment / Reference

ently updated for second round er review.

> Page 1 of 4 2/06/2011 5:42 p.m.

ld F11	Use Y	Title FRST: Clean water, productive land	Contact Person Richard McDowell	Lead Organisation AgResearch	Project Objective Understand spatial and temporal variability of contaminant loss to efficiently develop practical tools and BMPs to assist managers, industry and regulators achieve acceptable water quality targets	Со
F12	Y	FRST: Aquatic rehabilitation	John Quinn	NIWA	of threatened ecosystems and species (managed or not managed)	<u>http:/</u> scier proje ecos
F13	Y	FRST: Management of cumulative effects of stressor on aquatic ecosystem	Malcolm Green	NIWA	No info to hand	
F14	Y	FRST: Framework for interoperable freshwater models	Sandy Elliot		No info to hand	
F15	Y	THESIS: A study of the options to achieve water quality restoration goals in the Rotorua lakes.	Jonathan Abel	Waikato University	Study nutrient sources and pathways in the Lake Rotorua catchment to provide stakeholders and policy makers with a better understanding of how to control diffuse pollution of water-bodies.	
F16	Y	THESIS: Remediation measures to mitigate sediment and nutrient inputs from agricultural catchments to Waikato lakes	Rebecca Eivers	Waikato University	Investigate end of drain treatment systems to develop a toolbox of effective mitigations to reduce sediment and nutrient loads to lakes	

Comment / Reference

tp://www.niwa.co.nz/oursience/freshwater/researchojects/all/restoration-of-aquaticcosystems#null

			Oranta at Dana an			0
ld F17	Use Y	e Title OBI: Lake ecosystem restoration	Contact Person Bruce Clarkson	Lead Organisation Waikato University	Project Objective Restore indigenous lake biodiversity by development and proven application of new technologies to effectively manage harmful algal blooms and pest fish	Com http://v reporti 2010-0 http://v
F18	Y	SFF: Winter Forage Crops vs pasture: Managing environmental risk	Mark Shepherd	AgResearch	Management of winter forage crops to minimise N leaching while mantaining feed supply	
F19	Y	SFF: A farmer led approach to developing a catchment plan to improve water quality	Bob Parker Ian Power	Fruition Horticulture AgResearch	Demonstrate and test how a positive and cooperative approach can achieve water quality targets while allowing profitable farming to continue.	
F20	Y	THESIS: Nitrate removal potential and hydraulic performance of carbon media for denitrification reactors	Stewart Cameron	Waikato University	Study flow of effluent through denitrification beds to determine nitrate removal using a range of carbon substrates	
F21	Y	THESIS: Nitrification Inhibitors	Brendon Welton	Waikato University	Study delivery and effectiveness of nitrification inhibitors in the field on ash and pumice soils	
F22	Y	THESIS: not known	Glen Treweek	Waikato University	Study N leaching and pasture uptake from pumice soils irrigated with municipal effluent	

omment / Reference

<u>o://www.mfe.govt.nz/environmental</u>orting/about/partnerships/forum-10-05-11/craig-cary.pdf <u>o://www.lernz.co.nz/</u>

ld F23	Use Y	Title SFF: Preparing for river co- management: Considering different farm system's financial and environmental performance	Contact Person Alison Dewes	Lead Organisation AgResearch	Project Objective Quantification of the physical and financial performance of a range of farm systems in relation to environmental impacts	C
F24	Y	SFF: Uncovered stand-off facility design and management	Chris Glassey	DairyNZ	Develop guidelines for uncovered stand-off facility design and management to improve system profitability and environmental sustainability	
F25	Y	SFF: Meeting nutrient loss targets on dairy farms in the Lake Rotorua catchment	Tanira Kingi	AgResearch	On a model farm quantify the effectiveness of key management actions that demonstrate cost effective options for achieving change on individual farms and build capability among farmers to adopt technology and implement change	
F26	Υ	SFF: Optimising Nutrient Use In the Piako-Waihou catchment	Nick Pool	Foundation for Arable Research	Investigate methods and technology to reduce nutrient loading in the Waihou and Piako catchments by improvement of tactical application of nutrients, in particular N & P.	
F27	Y	Groundwater assimilative capacity programme.	Murray Close Roland Stenger	Environmental Science and Research Lincoln Ventures	Study the ability of the sub-surface environment to assimilate N and P	

Comment / Reference

Page 4 of 4 2/06/2011 5:42 p.m.

9.3 Whatawhata Research

WRC Literature Survey - N & P Loss to Waterbodies Published Papers

ld K01	Use Y	Title Improving the economic and environmental performance of a New Zealand hill country farm catchment: 1. Goal development and assessment of current performance.	Author (Year) Dodd, M.B.; Thorrold, B.S.; Quinn, J.M.; Parminter, T.G.; Wedderburn, M.E. (2008).	Reference New Zealand Journal of Agricultural Research 51: 127-141.
K02	Y	Improving the economic and environmental performance of a New Zealand hill country farm catchment: 2. Forcasting and planning land-use change.	Dodd, M.B.; Quinn, J.M.; Thorrold, B.S.; Parminter, T.G.; Wedderburn, M.E. (2008).	New Zealand Journal of Agricultural Research 51: 143-153.
K03	Y	Improving the economic and environmental performance of a New Zealand hill country farm catchment: 3. Short term outcomes of land use change.	Dodd, M.B.; Quinn, J.M.; Thorrold, B.S.; Parminter, T.G.; Wedderburn, M.E. (2008).	New Zealand Journal of Agricultural Research 53: 155-169.
K04	Υ	Transformation towards agricultural sustainability in New Zealand hill country pastoral landscapes.	Dodd, M.B.; Wedderburn, M.E.; Parminter, T.G.; Thorrold, B.S.; Quinn, J.M. (2008).	Agricultural Systems 98: 95-107.
K05	Y	Review of recent rural catchment- based research in New Zealand.	Dodd, M.B.; Wilcox, B.; Parminter, T. (2009).	Report for MAF Policy

Page 1 of 1 2/06/2011 5:43 p.m.