Taupo Emission Inventory 2004

Prepared by: Emily Wilton Environet Ltd

For: Environment Waikato PO Box 4010 HAMILTON EAST

July 2004

ISSN: 1172-4005

Document #: 963048

Initials Date 2/12/04

Approved for release by: Dr Vivienne Smith

Peer reviewed by: Dr Vivienne Smith

Initials

Date 2/12/04

Table of Contents

Exec	utive Su	Immary	v
1	Introdu	ction	1
2	Invento	ry Design	1
	2.1 Se	election of sources	1
	2.2 Se	election of contaminants	1
	2.3 Se	election of areas	2
	2.4 Te	emporal distribution	3
3	Domest	ic Heating	4
	3.1 M	ethodology	4
	3.2 Ho	ome heating methods	5
	3.3 Er	nissions from domestic heating	7
4	Motor V	/ehicles	12
	4.1 M	ethodology	12
	4.1.1	Emission factors	12
	4.1.2	Vehicle kilometres travelled	13
	4.2 M	otor vehicle emissions	15
5	Industri	al and Commercial	17
	5.1 M	ethodology	17
	5.2 In	dustrial and commercial emissions	19
6	Outdoo	r burning	21
	6.1 M	ethodology	21
	6.2 Er	nissions from outdoor burning	21
7	Other s	ources of emissions	22
8	Total E	missions	23
Refe	rences		27
Appe	endix On	e: Home Heating Questionnaire	29

Figures

Figure 2-1: Study area for 2004 Taupo emission inventory	3
Figure 3-1: Gas use by appliance type	7
Figure 3-2: PM10 emissions from different heating methods	8
Figure 4-1: Breakdown of PM10 (left) and PM2.5 (right) emissions from motor	
vehicles	15
Figure 4-2: Daily variations in PM10 emissions from motor vehicles	15
Figure 5-1: Location of industries with discharge to air consents in and around	
Таиро	18
Figure 8-1: Relative contribution of sources to PM10 and PM2.5 emissions in	
Таиро	23
Figure 8-2: PM10 emissions in Taupo by time of day	23
Figure 8-3: Relative contribution of sources to contaminant emissions	24

Tables

Table 3-1: Home heating survey area and sample details	4
Table 3-2: Emission factors for domestic heating methods	4
Table 3-3: Home heating methods and fuels in Taupo	6
Table 3-4: Emissions estimates for PM10, CO, NOx and SOx by time of day	9
Table 3-5: Emissions estimates for VOCs, CO2, and PM2.5 by time of day	10
Table 3-6: Taupo summary emissions by appliance type	11
Table 4-1: Vehicle registrations in Taupo (December 2000)	13
Table 4-2: New Zealand vehicle fleet profile from MOT (1998)	13

Table 4-3: Taupo emission factors for 2004 based on a suburban driving regime	13
Table 4-4: VKT breakdown by time of day and LOS for Taupo for 2000 and 2021	14
Table 4-5: VKT breakdown by time of day and LOS for Taupo for 2004	14
Table 4-6: Emissions from motor vehicles by time of day	16
Table 5-1: Emission factors for industrial discharges	19
Table 5-2: Industrial/commercial emissions for Taupo by time of day	20
Table 6-1: Outdoor burning emission factors (AP42,2002)	21
Table 6-2: Outdoor burning emission estimates for Taupo by time of day	21
Table 8-1: Relative contribution of different sources to contaminant emissions	24
Table 8-2: Total emissions by time of day for Taupo	25
Table 8-3: Total emissions by time of day per hectare for Taupo	26

Executive Summary

Air quality monitoring in Taupo from 2001 to 2003 has shown concentrations of PM_{10} in excess of the Ministry for the Environment's ambient air quality guideline and National Environmental Standard (NES) of 50 μ gm⁻³ (24-hour average). Based on 2003 data, the guideline may have been exceeded on 12 days if data are extrapolated for missing values. The NES allows only one exceedence per annum of 50 μ g m⁻³ (24-hour average).

Sources of PM_{10} and other contaminants in Taupo had previously been evaluated for the year 2000 using the emission inventory methodology. This involved a domestic home heating survey and an evaluation of motor vehicle emissions based on a road network model for Taupo. The industrial component relied on a 1997 industrial emissions assessment for the Waikato Region (Noonan, 1997).

This study updates the previous inventory data and includes an assessment of the sources of industrial emissions. Contaminants included were particles (PM_{10} and $PM_{2.5}$), carbon monoxide, nitrogen oxides, sulphur oxides, volatile organic compounds, carbon dioxide and benzene. This report primarily focuses on emissions of particles (PM_{10}), as concentrations of PM_{10} in Taupo are in breach of the NES. The PM_{10} sources included in the inventory assessment were domestic heating, motor vehicles, industrial and commercial activities and outdoor burning.

Emissions from domestic home heating were evaluated using the results of a household survey of heating methods. Woodburners and gas were found to be the dominant home heating methods in Taupo being used in the main living area in around 47% and 37% of homes respectively. Electricity was also a common heating method with around 34% of households using that method. Many households used more than one method to heat the main living area of their home.

The main source of PM_{10} and $PM_{2.5}$ emissions in Taupo was domestic home heating, which accounted for around 88% and 90% of total emissions respectively. For PM_{10} , the remaining 12% was distributed between motor vehicles (9%), outdoor burning (3%) and industrial emissions (<1%). Motor vehicles also accounted for about half of the CO and CO₂ and 90% of the NOx emissions.

1 Introduction

Air quality monitoring was carried out in Taupo from 2001 to 2003 using gravimetric sampling. The sampling regime was initially one-day-in-six but was reduced to a one-day-in-three in 2002. During 2003, four guideline exceedences were measured, indicating that around 12 breaches may have occurred if data were extrapolated for missing values. This is greater than the estimate of 6 guideline exceedences for 2002 and is in excess of the air quality guideline for PM₁₀ of 50 μ g m⁻³ (24-hour average) and the NES for PM₁₀ of 50 μ g m⁻³, which allows for just one exceedence (MfE, 2004).

Because of the frequency of guideline exceedences in Taupo, an assessment of management measures to achieve the proposed NES is required. This involves an evaluation of sources contributing to existing concentrations as well as likely trends in, and an assessment of management measures, to reduce concentrations.

Previously, a study of sources of emissions of PM_{10} and other contaminants in Taupo had been carried out for the year 2000 based on the results of a home heating survey and road network model for Taupo (Wilton, 2002). The industrial emissions assessment for that study was based on the 1997 study for the Waikato Region (Noonan, 1997). It included a number of estimates of emissions from sources with considerable uncertainty. In particular the estimates of PM_{10} emissions from fugitive dust sources are of concern and may result in an overestimate of the PM_{10} contribution from this source. When these emissions are included in the assessment, the relative contribution of industry to PM_{10} emissions in Taupo is 64%, with 30% from domestic heating and 6% from transport.

This study updates the 2000 emission inventory assessment and includes a revised industrial emissions inventory for Taupo. Results from the inventory will be used to assess management measures for air quality in Taupo.

2 Inventory Design

The inventory has been designed with a focus on emissions of PM_{10} , although it does include estimates of emissions of other contaminants. Actual monitoring of other contaminants has not been carried out in Taupo, although it is unlikely, based on monitoring carried out in other areas of New Zealand, that concentrations of other indicator contaminants will exceed the proposed NES values or air quality guidelines. One exception may be the air quality guideline for benzo(a)pyrene (BaP) as concentrations of this contaminant have been found to be high in areas where PM_{10} concentrations are elevated as a result of emissions from domestic home heating. No NES has been proposed for BaP at this stage.

2.1 Selection of sources

The inventory includes detailed estimates of emissions from domestic heating, outdoor burning, motor vehicles and industry. Emissions from lawn mowers, dust from farming activities and a number of other sources are also discussed in the report.

2.2 Selection of contaminants

The inventory included an assessment of emissions of suspended particles (PM_{10}), carbon monoxide (CO), sulphur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOC), carbon dioxide (CO₂) and fine particles ($PM_{2.5}$).

Emissions of PM_{10} , CO, SOx and NOx are included as these contaminants comprise class one air quality indicators as described by MfE (1994) because of their potential for adverse health impacts. Carbon dioxide is typically included in emission inventory

investigations in New Zealand to allow for the assessment of regional greenhouse gas CO_2 emissions. The finer $PM_{2.5}$ size fraction was also included, as a guideline for $PM_{2.5}$ may be considered by MfE within the next few years.

Volatile organic compounds are typically included in emission inventory investigations because of their potential contribution to the formation of photochemical pollution. These have been retained in the inventory to allow an assessment of emissions of precursors to ozone should future monitoring indicate concentrations of concern.

2.3 Selection of areas

The study area was the urban area of Taupo based on the census area unit boundaries for the areas of Rangatira, Nukuhau, Central Taupo, Tauhara, Hilltop, Waipahihi and Richmond Heights (Figure 2.1). This covers the area of greatest impact and allows subsequent assessments of data relative to census information.

The industrial area sited along Centennial Drive is not included as part of this inventory.

2.4 Temporal distribution

Daily data were collected based on average wintertime emissions and were broken down into the following time of day categories:

- 6am to 10am
- 10am to 4pm
- 4pm to 10pm
- 10pm to 6am

These categories have been used in other emission inventory investigations carried out in New Zealand e.g., Christchurch, Nelson, Hamilton, Dunedin, Timaru and Wellington. They were initially selected to coincide with variations in meteorological conditions that occur at different times of the day for high pollution events, and were based on observations of both pollution and meteorological conditions in Christchurch.

The purpose of collecting data for different time of day periods is to allow for subsequent assessments of the contribution of different sources to concentrations, as opposed to emissions. The latter evaluation requires details on the impact of meteorological conditions on contaminants' concentrations at different times of the day.

3 Domestic Heating

3.1 Methodology

The domestic heating emission inventory data was collected using a telephone survey of 360 households within the study area during the winter of 2004. The survey was carried out by Digipol during late May and early June 2004 using the emission inventory survey questionnaire shown in Appendix one. Emission factors were then applied to these data to provide an estimate of emissions for the urban areas of Taupo. Summary data for the survey and study area are shown in Table 3.1.

Table 3-1: Home heating survey area and sample details

	Households	Sample size	Area (ha)	Sample error
Taupo	6461	366	2068	5%

Home heating methods were classified as electricity, open fires, pre 1994 woodburners, 1994-1999 woodburners, post 1999 woodburners, multi-fuel burners, gas burners and oil burners.

The emission factors used to estimate emissions from domestic heating are shown in Table 3.2. These were reviewed for the Taupo 2004 inventory to check that previously used factors were consistent with any more recent testing. As for the 2000 Taupo domestic heating assessment, the open fire and multifuel burner factors were based on the Christchurch 1999 emission factors. The basis for these is detailed in Wilton (2001a). The woodburner emission rates were derived based on an evaluation of types of solid fuel burners installed. The gas and oil PM_{10} emission factors have also been revised as a result of more recent testing in New Zealand (Scott, 2004).

	PM ₁₀ g/kg	COg/ kg	NOx g/kg	SO₂ g/kg	VOC g/kg	CO ₂ g/kg	PM _{2.5} g/kg
Open fire - wood	10	100	1.6	0.2	30	1600	10
Open fire - coal	21	80	4	5.0	15	2600	12
Pre 1994 burners	13	130	0.5	0.2	39	1800	13
1994-1999 burners	6.5	65	0.5	0.2	19.5	1800	6.5
Post 1999 burners	6	60	0.5	0.2	18	1800	6
Multi-fuel ¹ - wood	13	130	0.5	0.2	39	1600	13
Multi-fuel ¹ - coal	28	120	1.2	3.0	15	2600	12
Oil	0.3	0.6	2.2	3.8	0.25	3200	0.7
Gas	0.03	0.18	1.3	7.6E-09	0.2	2500	0.6

¹ - includes potbelly, incinerator, coal range and any enclosed burner that is used to burn coal

One of the assumptions underlying the emissions calculations is the average weight for a log of wood. Average log weights used for inventories in New Zealand have included 1.6 kg, 1.4 kg and more recently 1.9 kg. The latter value is based on a survey of 219 households in Christchurch during 2002 and represents the most comprehensive assessment of average fuel weight. There is some potential for fuel size to vary by region although factors such as appliance design should limit these variations. All three average fuel weight values were derived based on measurements carried out in Christchurch. The 1.9 kg average fuel weight value represents a 19% increase over the year 2000 Taupo emission inventory, which used the initial average fuel weight of 1.6 kg. Compared to the 2000 inventory, the 2004 estimates of emissions from domestic heating will be 19 per cent higher, as a result of a change in methodology.

Emissions for each contaminant and for each time period and season were calculated based on the following equations:

Equation 3.1 Where:	CE (g/day) = EF (g/kg) * FB (kg/day)										
	CE = contaminant emission										
	EF = emission factor										
	FB = fuel burnt										
Equation 3.2 Where:	CE (g/time period) = EF (g/kg) * FB (kg/time period)										
	CE = contaminant emissions per time period										
	EF = emission factor										
	FB (kg/time period) = <u>no. of hours in time period</u> * total daily fuel use										
	24hrs										

The main assumptions underlying the emissions calculations are as follows:

- The average weight of a log of wood is 1.9 kg. This weight was based on a diary survey carried out in Christchurch during 2002 (Lamb, 2003).
- The average weight of a bucket of coal is 9 kg.
- That the total daily fuel use (kg) is distributed across the different times of the day based on the number of hours in each time period. For example, if a household indicates that it burns 15 kg wood per day and burns during the periods 4pm-10pm and 6am-10am, it is assumed that 9 kg is burnt in the evening period and 6 kg during the morning period.

3.2 Home heating methods

The main methods of home heating in Taupo in 2004 were woodburners (47%), gas (37%) and electricity (34%). Of the households using gas, about half use flued gas and half unflued gas heating (Figure 3.1). Table 3.3 shows that households rely on more than one method of heating their main living area during the winter months.

Wood burning is the most common fuel for households using solid fuel heating methods in Taupo with 58% of households using this fuel. About 62 tonnes of wood is burnt per winter's night. In comparison coal is used by around 2% of Taupo households and around half a tonne is burnt per night.

Only a small proportion (9%) of Taupo residents use open fires to heat their main living area on a typical winter's night and around 3% use multifuel burners.

	Heating	methods	Fue	l Use			
	НН	%	t/day	%			
Electricity	2224	34%					
Total Open fire	583	9%	12	13%			
Open fire - wood	565	9%	11	12%			
Open fire - coal	53	1%	0	1%			
Total Woodburner	3036	47%	76	81%			
Pre 1994 woodburner	946	15%	22	23%			
1994-1999 woodburner	769	12%	16	18%			
Post 1999 woodburner	1321	20%	38	40%			
Multi-fuel burner	177	3%	3	4%			
Multi-fuel burner-wood	177	3%	3	3%			
Multi-fuel burner-coal	88	1%	0.3	0.3%			
Gas	2365	37%	1.9	2%			
Oil	124	2%	0.5	1%			
Total Wood	3778	58%	90.2	97%			
Total Coal	141	2%	0.7	1%			
Total	6461		93				

Table 3-3: Home heating methods and fuels in Taupo

Figure 3-1: Gas use by appliance type

3.3 Emissions from domestic heating

Tables 3.4 and 3.5 show estimates of emissions from domestic heating in Taupo by time of day. These data are also presented in grams per hectare (g/ha) and as a percentage of the total contaminant emissions in Table 3.6. Results indicate the following:

- About 784 kilograms of PM₁₀ is discharged from domestic home heating into the air over Taupo on a typical winter's night/day.
- Of the estimated 784 kilograms of PM₁₀ emitted from domestic heating, around 778 kilograms (99%) is in the finer, PM_{2.5} size fraction.
- About 98% of the PM₁₀ emissions come from the burning of wood with around 2% from coal and less than 0.1% from gas and oil.
- The main source of PM_{10} from domestic heating is woodburners, which contribute 77% of emissions. Open fires contribute 15% and multifuel burners 6% of the PM_{10} emissions from domestic home heating.
- Wood burning is responsible for the majority of emissions of all contaminants included in the inventory.
- Over half of the PM₁₀ emissions occur during the 4pm 10pm period coinciding with the time of day when meteorological conditions are most likely to be conducive to high pollution.
- The contribution of older (pre 1994) burners to PM₁₀ emissions is high (36%) relative to the number of households using them and the quantity of fuel burnt. This is because these burners emit more per kilogram of fuel burnt on average, than most of the other heating methods¹.

¹ With the exception of coal burning on open fires and multifuel burners

Figure 3-2: PM10 emissions from different heating methods

	Su	spended	Particul	ate			Carbon	monoxic	le			Nitroge	n oxide	s						
	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total PM₁₀ (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total NOx (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total SOx (kg)
Open fire - wood	7	13	83	9	112	74	130	828	89	1121	1	2	13	1	18	0	0	2	0	2
Open fire - coal	0	0	10	0	10	0	0	38	0	38	0	0	2	0	2	0	0	2	0	2
Pre 1994 woodburner	22	43	161	57	284	224	435	1606	575	2840	1	2	6	2	11	0	1	2	1	4
1994-1999 woodburner	12	14	57	24	106	115	136	568	243	1062	1	1	4	2	8	0	0	2	1	3
Post 1999 woodburner	27	25	135	39	227	266	255	1351	394	2266	2	2	11	3	19	1	1	5	1	8
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Multi-fuel burner - wood	6	9	16	8	39	63	88	160	84	395	0	0	1	0	2	0	0	0	0	1
Multi-fuel burner - coal	1	1	4	1	7	4	6	17	5	32	0	0	0	0	0	0	0	0	0	1
Total Wood	74	104	451	138	768	742	1044	4513	1385	7683	5	7	36	9	57	2	2	11	3	18
Total Coal	0.9	1.4	13.9	1.2	17.4	4.0	6.0	54.7	5.3	69.9	0.0	0.1	2.1	0.1	2.2	0.1	0.1	2.8	0.1	3.2
Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.0	0.0	0.4	0.7	1.2	0.0	0.0	0.7	1.3	2.0
Gas	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.2	0.0	0.3	0.6	0.3	1.4	0.1	2.5	0.0	0.0	0.0	0.0	0.0
Total	75	106	465	140	786	746	1050	4568	1390	7754	6	8	40	10	63	2	2	14	5	23

Table 3-4: Emissions estimates for PM10, CO, NOx and SOx by time of day

		VO	Cs				Carbon	dioxide							
	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total VOC (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO ₂ (t)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	PM _{2.5} (kg)
Open fire - wood	22	39	248	27	336	1	2	15	2	20	7	13	83	9	112
Open fire - coal	0	0	7	0	7	0	0	1	0	1	0	0	6	0	6
Pre 1994 woodburner	67	130	482	172	852	3	6	22	8	39	22	43	161	57	284
1994-1999 woodburner	35	41	170	73	319	3	4	16	7	29	12	14	57	24	106
Post 1999 woodburner	80	76	405	118	680	8	8	41	12	68	27	25	135	39	227
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Multi-fuel burner - wood	19	26	48	25	118	1	1	2	1	5	6	9	16	8	39
Multi-fuel burner - coal	0	1	2	1	4	0	0	0	0	1	1	1	2	1	4
Total Wood	223	313	1354	415	2305	16	21	96	29	162	74	104	451	138	768
Total Coal	0.5	0.7	9.2	0.7	11.1	0.1	0.1	1.6	0.1	1.9	0.5	0.8	7.9	0.7	9.9
Oil	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.6	1.1	1.7	0.0	0.0	0.0	0.0	0.0
Gas	0.0	0.0	0.0	0.0	0.0	1.1	0.6	2.6	0.3	4.6	0.0	0.0	0.0	0.0	0.1
Total	223	314	1363	416	2316	18	22	100	31	171	75	105	459	139	778

Table 3-5: Emissions estimates for VOCs, CO2, and PM2.5 by time of day

	Fuel Use		e PM ₁₀		СО					NOx			SOx			voc		CO ₂			PM _{2.5}		
	t/day	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	kg	g/ha	%	t	kg/h a	%	kg	g/ha	%
Open fire	11.7	13%	122	59	16%	1159	561	15%	20	10	31%	5	2	20%	344	166	15%	21	10	13%	118	57	15%
Open fire - wood	11.2	12%	112	54	14%	1121	542	14%	18	9	28%	2	1	10%	336	163	15%	20	10	12%	112	54	14%
Open fire - coal	0.5	1%	10	5	1%	38	18	0%	2	1	3%	2	1	10%	7	3	0%	1	1	1%	6	3	1%
Total woodburner	75.9	81%	617	298	78%	6167	2982	80%	38	18	60%	15	7	65%	1850	895	80%	137	66	80%	617	298	79%
Pre 1994 woodburner	21.8	23%	284	137	36%	2840	1373	37%	11	5	17%	4	2	19%	852	412	37%	39	19	23%	284	137	36%
1994-1999 woodburner	16.3	18%	106	51	14%	1062	513	14%	8	4	13%	3	2	14%	319	154	14%	29	14	17%	106	51	14%
Post 1999 woodburner	37.8	40%	227	110	29%	2266	1095	29%	19	9	30%	8	4	33%	680	329	29%	68	33	40%	227	110	29%
Total multi-fuel burner	3.3	4%	47	23	6%	426	206	6%	2	1	3%	1	1	6%	122	59	5%	6	3	4%	44	21	6%
Multi-fuel burner- wood	3.0	3%	39	19	5%	395	191	5%	2	1	2%	1	0	3%	118	57	5%	5	3	3%	39	19	5%
Multi-fuel burner- coal	0.3	0%	7	4	1%	32	15	0%	0	0	0%	1	0	3%	4	2	0%	1	0	0%	4	2	1%
Gas	1.9	2%	0	0	0%	0	0	0%	2	1	4%	0	0	0%	0	0	0%	5	2	3%	0	0	0%
Oil	0.5	1%	0	0	0%	0	0	0%	1	1	2%	2	1	9%	0	0	0%	2	1	1%	0	0	0%
Total wood	90	97%	768	371	98%	7683	3715	99%	57	28	91%	18	9	78%	2305	1114	100%	162	78	95%	768	371	99%
Total coal	1	1%	17	8	2%	70	34	1%	2	1	3%	3	2	14%	11	5	0%	2	1	1%	10	5	1%
Total	93		786	380		7754	3749		63	31		23	11		2316	1120		171	82		778	376	0%

Table 3-6: Taupo summary emissions by appliance type

4 Motor Vehicles

4.1 Methodology

Assessing emissions from motor vehicles involves collecting data on vehicle kilometres travelled (VKT) under different levels of congestion, and the application of emission factors to these data. In Taupo, a road network model has been developed to estimate VKTs travelled in the area under different levels of congestion. The model was updated in 2002 with VKTs and emissions estimates made by Dave Hunter from Gabites Porter for the year 2000 and for the year 2021 with two estimates of the latter made based on a "do nothing" and a "do minimum" scenario for traffic management. Emission estimates for Taupo for 2004 were based on the 2000 road network model and the 2021 "do minimum" scenario.

4.1.1 Emission factors

The emission factors used to estimate motor vehicle emissions for PM_{10} , CO, NOx and VOC were taken from the New Zealand Traffic Emission Rates (NZTER) database based on a vehicle fleet profile derived from motor vehicle registrations for Taupo (Table 4.1). The percentages of different vehicles are similar to the national vehicle fleet profile for 1998 described in the Ministry of Transport's Vehicle Fleet Emission Control Strategy (Table 4.2). The NZTER database was developed by the Ministry of Transport (MOT) based on measured emissions rates from actual vehicle emissions tests on New Zealand vehicles under various road/traffic conditions. Emission rates for SOx and CO_2 are not included in the NZTER database and were selected based on emission rates derived by the Fuel and Energy Group for the national vehicle fleet profile.

Benzene emission factors were derived based on a weight fraction of motor vehicle VOC emissions from the Australian National Pollutant Inventory. These were 6.58% for petrol vehicles, 1.01% for diesel vehicles and 0.943% for LPG vehicles. These data were apportioned using the Taupo vehicle fleet profile. Because of differences in the composition of New Zealand and Australian petrol, these data should be treated as rough estimates that provide an indication of order of magnitude only.

The emission factors for $PM_{2.5}$ were based on estimates of PM_{10} emissions using data from the British Colombia Lower Fraser Valley adjusted for the Taupo vehicle fleet profile. This indicated that around 64% of the PM_{10} tailpipe emissions would be in the $PM_{2.5}$ size fraction in the Taupo area. In addition to tailpipe emissions, PM_{10} from the wearing of brakes and tyres were also included in the emissions assessments. Emission factors for PM_{10} and $PM_{2.5}$ from these sources were also derived from the British Colombia Lower Fraser Valley data adjusted for the Taupo vehicle fleet profile. However, the extent to which these conversions based on overseas data are applicable to New Zealand vehicle emissions is uncertain. Consequently emission estimates for $PM_{2.5}$ from motor vehicles and PM_{10} from the wearing of tyre and brakes should be treated with caution.

	Petrol	Diesel	LPG	Other	Total
Cars	10,822	1118	5	5	11,950
Light commercial vehicle	1,279	1276	5		2,560
Bus	23	66	4		93
Heavy truck	13	515	<0.1		528
Miscellaneous	32	182	1		215
Motorcycle	283				283
Total	12,452	2,975	15	5	15,446
Percentage	80.6%	19.3%	0.1%	0.0%	100%

Table 4-1: Vehicle registrations in Taupo (December 2000)

Table 4-2: New Zealand vehicle fleet profile from MOT (1998)²

	Petrol	Diesel	CNG	LPG	Electric	Total
Cars	1798000	103100	280	640		1902020
LCV	212000	148600	130	230		360960
Bus	600	6600	80	80 170		8650
Heavy truck	3200	68000	280	330		71810
Miscellaneous	6200	18600				24800
Motorcycle	79000					79000
Total	2099000	344900	770	1370	1200	2447240
Total percentage	85.8%	14.1%	0.0%	0.1%	0.0%	100.0%

Emission factors for Taupo were selected based on "suburban" type driving and for three different driving conditions called Levels Of Service (LOS). The LOS categories are a representation of traffic congestion in a road corridor and include free flow (LOS category A-B), interrupted flow (LOS category C-D) and congested (LOS category E-F). The latter LOS category was not relevant for the year 2000 but some category E-F LOS were estimated for 2021.

The emission factors for each contaminant and each LOS category for Taupo for 2004 are shown in Table 4.3. The NZTER derived emission rates are based on 30% of the VKTs occurring under cold start conditions.

	CO g/km	VOC g/km	NOx g/km	PM ₁₀ g/km	SOx g/km	CO ₂ g/km	Benzene g/km
Congested (E-F)	21.43	3.09	1.41	0.20	0.23	447.33	0.17
Interrupted (C-D)	17.91	2.53	1.38	0.16	0.19	386.17	1.38E-01
Free flow (A-B)	15.20	2.41	1.28	0.14	0.18	346.16	1.31E-01

Table 4-3: Taupo emission factors for 2004 based on a suburban driving regime

4.1.2 Vehicle kilometres travelled

The daily vehicle kilometres travelled (VKT) in Taupo for 2000 and 2021 were calculated by Gabbites Porter using the TRACKs road network modelling system. In this model, road corridors within the study area are identified by means of a co-ordinate system and referred to as road links. The volume of traffic on the road for each road link for any given hour is represented by one of four one-hour time slots called AM, PM, IP and EV.

² Ministry of Transport, 1998, Vehicle fleet emission control strategy – final report. Ministry of Transport.

The model estimates the number of vehicles in each of the road links for each of these time slots. The number of vehicles is then multiplied by the link distance to give the vehicle kilometres travelled (VKT) for each time period. A level of service value (A-B, C-D, E-F) is allocated to each VKT estimate (for each road link and time of day category) based on the ratio of volume of traffic to the capacity of the road link to sustain motor vehicles.

Table 4.4 shows the number of VKT for each of the different time periods, for each of the different levels of congestion for 2000 and 2021. These were calculated by combining the one-hour periods AM, PM, EV and IP as follows:

- 6am-10am: (2xAM +2xEV)
- 10am-4pm: (5.75 x IP)
- 4pm-10pm: (2xPM+1.25xIP+2.75xEV)
- 10pm-6am: (2.5xEV)

The extrapolated 2004 values are shown in Table 4.5.

Table 1-1. VKT	broakdown by	time of a	20 I bac yet	for Tauno	for 2000	and 2021
	preakuowii by		iay anu LOS	ioi raupo		anu 202 i

	Total VKT		Time	of day							
2000		6am-10am	10am-4pm	4pm-10pm	10pm-6am						
A-B	428636	80126	180988	138567	28955						
C-D	17622	3558	5615	8449	0						
E-F	0										
Total	446,258	83684	186603	147016	28955						
		Time of day									
	Total VKT		Time	of day							
2021	Total VKT	6am-10am	Time 10am-4pm	of day 4pm-10pm	10pm-6am						
2021 A-B	Total VKT 459822	6am-10am 86,260	Time 10am-4pm 193,246	of day 4pm-10pm 149,386	10pm-6am 30,931						
2021 A-B C-D	Total VKT 459822 59494	6am-10am 86,260 12,911	Time 10am-4pm 193,246 23,668	of day 4pm-10pm 149,386 22,915	10pm-6am 30,931 0						
2021 A-B C-D E-F	Total VKT 459822 59494 326	6am-10am 86,260 12,911 326	Time 10am-4pm 193,246 23,668 0	of day 4pm-10pm 149,386 22,915 0	10pm-6am 30,931 0 0						

Table 4-5: VKT breakdown by time of day and LOS for Taupo for 2004

	Total VKT		Time	of day	
2004		6am-10am	10am-4pm	4pm-10pm	10pm-6am
A-B	572092	108341	237372	188336	38043
C-D	59494	12911	23668	22915	0
E-F	1500	1500	0	0	0
Total	633085	122752	261040	211251	38043

Emissions for the year 2004 were estimated by multiplying the VKT estimates in Table 4.5 by the emission factors shown in Table 4.3. Equation 4.1 shows the calculation used to determine the amount of emissions for each time period.

Equation 4.1 Emissions(g)=Emission Factor (g/km) * VKT (km)

The emissions over a 24-hour period were calculated by totalling the emissions calculated during the four emission inventory time-periods.

4.2 Motor vehicle emissions

In Taupo around 520,000 vehicle kilometres are estimated to be travelled per day during 2004. Traffic conditions are relatively free flowing and the majority of the VKTs occur during the 10am to 10pm periods.

Around 83 kilograms of PM_{10} is estimated to be produced as a result of vehicle emissions in Taupo. Of this 76 kg is estimated to be from tailpipe emissions with 3kg from brake wear and 4kg from tyres (Figure 4.1). Based on overseas emission data adjusted for the Taupo vehicle fleet, approximately 64% of the tailpipe and 100% of the brake and tyre wear PM_{10} emissions are in the finer $PM_{2.5}$ size fraction. If these data are applicable to motor vehicle emissions in New Zealand, about 72% of the PM_{10} emissions from motor vehicles are likely to be in the finer $PM_{2.5}$ size fraction.

Figure 4-1: Breakdown of PM10 (left) and PM2.5 (right) emissions from motor vehicles

Figure 4.2 shows variations in motor vehicle PM_{10} emissions in Taupo by time of day. The majority of the emissions occur during the daytime (10am-4pm) time period and evening periods with smaller contributions occurring during the morning (20%) and night time (6%) periods.

Figure 4-2: Daily variations in PM10 emissions from motor vehicles

Other contaminant emissions from motor vehicles in Taupo include around 8 tonnes of CO, 672kg of NOx and 92kg of SOx. In comparison, in Christchurch, where CO concentrations exceed ambient air quality guidelines at least once during most winters, motor vehicles emit around 109 tonnes of CO within the main urban area.

Tables 4.6 and 4.7 show emissions from motor vehicles in Taupo by time of day and by weight and grams per hectare respectively.

		PM ₁	0		СО					NOx					SOx					
	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	PM ₁₀ (kg)	6am- 10am	10am -4pm	4pm- 10pm	10pm- 6am	CO (kg)	6am- 10am	10am -4pm	4pm- 10pm	10pm -6am	NOx (kg)	6am- 10am	10am -4pm	4pm- 10pm	10pm -6am	SOx (kg)
Taupo	16	35	27	5	83	1549	3361	2681	40	8061	129	280	223	40	672	18	39	31	40	92
	VOC				CO ₂				PM _{2.5}											
	6am- 10am	10am -4pm	4pm- 10pm	10pm- 6am	VOC (kg)	6am- 10am	10am -4pm	4pm- 10pm	10pm -6am	CO ₂ (t)	6am- 10am	10am -4pm	4pm- 10pm	10pm -6am	PM _{2.5} (kg)					
Taupo	241	525	417	74	1258	35	76	61	11	182	12	26	18	3	60					

 Table 4-6: Emissions from motor vehicles by time of day

 Table 4.7:
 Summary of motor vehicle emissions in Taupo

		P	M_{10}	С	0	N	Ox	SOx		
	Hectares	kg g/ha		kg	g/ha	kg	g/ha	kg	g/ha	
Taupo	2068	83	40	8061	3898	672	325	92	45	
		V	OC	C	CO_2		1 _{2.5}			
	Hectares	kg		t	kg/ha	kg	g/ha			
Таиро	2068	1258		182	88	60	29			

5 Industrial and Commercial

5.1 Methodology

Only a small number of industries in the Taupo area are required to hold a resource consent for a discharge to air. The majority of these are located to the northeast of the urban area of Taupo (Figure 5.1) and are not within the study area shown in Figure 2.1. Based on the topography of the area, it would seem unlikely that emissions from these industries would contribute to PM_{10} concentrations measured in the main urban area of Taupo and hence these have not been included in this inventory.

Thus industrial emissions within the study area are limited to a small number of minor activities. These activities were identified using school lists, the Taupo phone book and through consultation with the Taupo District Council. The methodology used to estimate emissions from these activities involved the collection of data relating to the process e.g., boiler, referred to as activity data and the application of emission factors to these data. Activity data were collected through contact with local industrial and commercial activities and local schools. The selection of industries for inclusion in the inventory was primarily based on potential for PM_{10} emissions. Industrial activities such as spray painting or dry cleaning operations, which discharge primarily volatile organic compounds (VOC) were not included in the assessment.

Emissions from one consented activity and several non-consented industrial/commercial discharges were included in the assessment. The types of discharges included incineration/crematorium and small coal and gas boilers.

Figure 5-1: Location of industries with discharge to air consents in and around Taupo

The combustion emissions were estimated using emission factor data as indicated in Equation 5.1.

Equation 5.1 Emissions (kg) = Emission factor (kg/tonne) x Fuel use (tonnes)

The emission factors used to estimate the quantity of emissions discharged are shown in Table 5.1. The coal fired boiler emission factors for PM_{10} are based on coal research limited emission factors. Emission factors for $PM_{2.5}$ are based on the USEPA AP42 database³ particle size distribution factors, as are emission factors for PM_{10} from wood fired boilers and diesels and CO, NOx and SOx. The VOC and CO₂ emission factors are based on factors derived by NIWA for the Christchurch 1996 emission inventory (NIWA, 1998).

	PM₁₀ g/kg	PM _{2.5} g/kg	CO g/kg	NOx g/kg	SO₂ g/kg	VOC g/kg	CO₂ g/kg
Coal boiler (underfeed stoker)	3.1	1.9	5.5	4.8	13.5	0.1	2400
Diesel boiler	0.47	0.11	0.67	3.24	10.5	0.2	3194
	g/m ³	g/m ³	g/m ³	g/m ³	g/m ³	g/m ³	g/m³
Natural gas	0.12	0.12	1.34	1.6	0.0096	0.088	1920

5.2 Industrial and commercial emissions

Table 5.2 shows an estimated one kg of PM_{10} per day during the winter months from industrial and commercial activities in the urban areas of Taupo. It should be noted when considering emissions of CO_2 and VOCs that emissions from geothermal activities have not been included in the assessment. These are located outside of the urban area, although generally closer than the industries located around Centennial Drive and do not emit significant amounts of PM_{10} .

³ http://www.epa.gov/ttn/chief/ap42/index.html

	Р	M ₁₀	С	0	N	Эх	SOx		
Hectares	kg g/ha		kg	kg g/ha		g/ha	kg	g/ha	
	1 1		1	1 1		1	2	1	
	v	OC	С	0 ₂	PN	N _{2.5}			
Hectares	kg g/ha		kg	kg g/ha		g/ha			
	0 0		1	0	0	0			

 Table 5.2:
 Summary of Taupo industrial/ commercial emissions

 Table 5-2: Industrial/commercial emissions for Taupo by time of day

Suspended Particulate – PM ₁₀			M ₁₀	Suspended Particulate - PM _{2.5}				Carbon monoxide				Nitrogen oxides							
6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	PM ₁₀ (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	PM _{2.5} (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	CO (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	NOx (kg)
0	1	0	0	1	0	0	0	0	1	1	1	0	0	1	1	1	0	0	2
	Sulp	ohur oxi	ides		Volatile organic compounds				Carbon dioxide										
6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	SOx (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	VOC (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	CO ₂ (t)					
1	1	0	0	2	0	0	0	0	0	0	0	0	0	1					

6 Outdoor burning

Emissions from outdoor burning can contribute to PM_{10} and $PM_{2.5}$ concentrations. In some urban areas of New Zealand outdoor burning is prohibited because of the adverse health and nuisance effects associated with these emissions. Outdoor burning includes any backyard burning of household or garden wastes in a drum, incinerator or open air. Presently there are no regulations restricting outdoor burning in Taupo, although section 17 of the Resource Management Act (1991) or section 29 of the Health Act could be used to control these emissions if individual discharges were causing adverse effects.

6.1 Methodology

Emissions from outdoor burning during the winter months were estimated for Taupo based on data collected for the 2004 Taupo domestic home heating emission survey. This data indicated that outdoor burning was carried out by around 4% of households in Taupo, burning an average of around 5 fires per winter per household. The proportion of green waste (60%) versus household rubbish burnt (40%) was based on data collected in Otago (ESR, 1999). Emissions were calculated based on the assumption of an average weight of material per burn of 174kg and using the emission factors in Table 6.1.

	PM _{2.5}	PM 10	СО	NOx	SOx	VOC	CO ₂
	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg	g/kg
Garden rubbish	8	8	42	3	0.5	4	1470
Household rubbish	17	19	42	3	0.5	4.278	1470
Emission factor	11.7	12.5	42.0	3.0	0.5	4.3	1470

Table 6-1: Outdoor burning emission factors (AP42,2002)	Table 6-1:	Outdoor	burning	emission	factors	(AP42,2002)
---	------------	---------	---------	----------	---------	-------------

6.2 Emissions from outdoor burning

Outdoor burning emission estimates for Taupo (Table 6.2) indicate that around 17 kg of PM_{10} from outdoor burning could be expected per day during the winter months. Of this, the majority (93%) is within the finer, $PM_{2.5}$ size fraction. Outdoor burning also produces around 58 kg of carbon monoxide and around 2031 tonnes of carbon dioxide per day during winter.

It should be noted, however, that there are a number of uncertainties relating to this estimation. In particular it is assumed that burning is carried out evenly throughout the winter, whereas in reality it is highly probable that a disproportionate amount of burning is carried out during weekend days. Thus on some days no PM_{10} from outdoor burning may occur and on other days it might be many times the amount estimated in this assessment.

	PM _{2.5}	PM ₁₀	СО	NOx	SOx	VOC	CO ₂
	kg	kg	kg	kg	kg	kg	kg
6am-10am	4	4	15	1	0	1	4
10am-4pm	12	13	44	3	1	4	12
4pm-10pm							
10pm-6am							
Nelson - total							

Table 6-2: Outdoor burning	a emission	estimates for	Taupo b	v time of	f dav
	1 01111331011	Commuted for	Tuupo b		uuy

Other sources of emissions

The major sources of PM_{10} and other contaminants during the winter months when PM_{10} concentrations are high in Taupo are likely to result from domestic home heating, outdoor burning, motor vehicles and industry.

Other sources of emissions not included in the inventory include dusts (PM_{10}) and vegetation, which can emit VOC and NOx. Neither of these latter contaminants is likely to be an air quality concern in Taupo and vegetation is unlikely to be a significant source in the predominantly urban area of Taupo. A natural emissions inventory for the Waikato Region was prepared in 1999 and includes estimates of emissions from vegetative sources (NIWA, 1999).

Emissions of PM_{10} from wind blown dusts from the erosion of soils and from the tilling of land are also potential contributors. Some contribution from the more rural areas surrounding Taupo is possible. Some anecdotal evidence also suggests that the pumice soils of Taupo may give rise to greater natural dust emissions than soil types in other parts of New Zealand. Limited emission data available for tilling suggests around 1.26 kg PM_{10} and 0.6 kg $PM_{2.5}$ is produced per hectare tilled (GVRD, 1998). Thus if 10 hectares were being tilled in or near to the Taupo area, emissions might be in the order of 12 kilograms of PM_{10} and 6 kg of $PM_{2.5}$. The contribution from re-suspension of natural dusts from activities other than tilling is largely unknown.

Lawn mowers, leaf blowers and chainsaws can also contribute small amounts of particulate. These are not typically included in emission inventory studies owing to the relatively small contribution, particularly in areas where solid fuel burning is a common method of home heating. Based on data for other areas, PM_{10} emissions from lawn mowing in Taupo are likely to be less than 3 kg per day⁴.

⁴ ESR (1999) indicates an average of around 3 kg per day of PM₁₀ emissions from lawn mowing for Dunedin

8 Total Emissions

Domestic heating is the main source of PM_{10} and $PM_{2.5}$ emissions in Taupo during the winter months, contributing around 88% of PM_{10} and 90% of the $PM_{2.5}$. Of the domestic PM_{10} emissions, older (pre-1994) woodburners contribute around one third of the emissions, with open fires contributing 15%. Figure 8.1 shows that the other 12% of the total PM_{10} emissions come from a combination of motor vehicles (9%) and outdoor burning (3%). Industry within the urban area contributes less than 1% of the PM_{10} emissions in Taupo township.

Figure 8-1: Relative contribution of sources to PM10 and PM2.5 emissions in Taupo

The majority of the PM_{10} emissions occur during the evening (4pm to 10pm) time period (Figure 8.2). This is likely to coincide with the time of day when meteorological conditions are most conducive to elevated pollution levels as temperature inversions and low wind speeds typically occur during the evening period. Emissions that occur during times when meteorological conditions are conducive to elevated pollution will have a greater impact on 24-hour average concentrations than emissions that occur when wind speeds are elevated.

Figure 8-2: PM10 emissions in Taupo by time of day

The total quantities of emissions for each contaminant and the breakdown of emissions by time of day are shown in Tables 8.1 and 8.2.

These suggest that around 895 kilograms of PM_{10} are discharged into the air over Taupo per day during the winter months. This compares to around 750 kilograms per day in Tokoroa, around two tonnes per day in Nelson and around 8 tonnes in Christchurch. The majority (96%) of the PM_{10} in Taupo is estimated to be in the $PM_{2.5}$ size fraction, although natural sources not included in this assessment may have a greater proportion of PM_{10} in the coarser (PM_{10} - $PM_{2.5}$) size fraction. Other potential sources of PM_{10} emissions not included in the detailed emissions assessment are discussed in chapter seven. A basic analysis suggests that the contribution of sources identified and assessed in that section is likely to be less than 30 kg, although this does not include an assessment of the contribution of natural dusts from activities other than tilling.

Motor vehicles are the main source of CO, CO₂, NOx and SOx.

	PM 10	PM _{2.5}	СО	NOx	SOx	voc	CO ₂
Domestic heating	88%	90%	49%	9%	20%	65%	48%
Motor vehicle	9%	7%	51%	90%	78%	35%	51%
Outdoor burning	3%	3%	1%	1%	1%	0%	1%
Industry	<1%	<1%	<1%	<1%	2%	<1%	<1%

Table 8-1: Relative contribution of different sources to contaminant emissions

Figure 8-3: Relative contribution of sources to contaminant emissions

Total emissions (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total PM₁₀ kg	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total PM _{2.5} kg	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total NOx (kg)
Domestic heating	75	106	465	140	786	75	105	459	139	778	746	1050	4568	1390	7754	6	8	40	10	63
Motor vehicle	16	35	27	5	83	12	26	18	3	60	1549	3361	2681	40	8061	129	280	223	40	672
Outdoor burning	6	19			25	6	18			23	21	63			84	1	4			6
Industry	0	1	0	0	1	0	0	0	0	1	1	1	0	0	1	1	1	0	0	2
Total	98	160	492	144	895	93	149	478	142	862	2317	4474	7249	1430	15900	137	294	263	50	743

т	otal emissions (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total SOx (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total VOC (kg)	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO ₂ (t)
D	omestic															
n	eating	2	2	14	5	23	223	314	1363	416	2316	18	22	100	31	171
N	lotor vehicle	18	39	31	40	92	241	525	417	74	1258	35	76	61	11	182
C	outdoor															
b	urning	0	1			1	2	6			9	1	2			3
Ir	ndustry	1	1	0	0	2	0	0	0	0	0	0	0	0	0	1
L																
Т	otal	21	43	45	45	119	466	845	1781	491	3583	54	100	161	41	357

	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total PM₁₀ g/ha	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total PM _{2.5} g/ha	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO g/ha	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total NOx g/ha
Domestic heating	36	51	225	68	380	36	51	222	67	376	361	507	2209	672	3749	3	4	19	5	31
Motor vehicle	8	17	13	2	40	6	13	9	2	29	749	1625	1296	19	3689	62	136	108	19	325
Outdoor burning	3	9	0	0	12	3	8	0	0	11	10	30	0	0	41	1	2	0	0	3
Industry	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
Total	47	77	238	70	433	45	72	231	69	417	1120	2163	3505	692	7480	66	142	127	24	359

Table 8-3: Total emissions by time of day per hectare for Taupo

	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total SOx g/ha	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total VOC g/ha	6am- 10am	10am- 4pm	4pm- 10pm	10pm- 6am	Total CO₂ kg/ha
Domestic heating	1	1	7	2	11	108	152	659	201	1120	9	11	49	15	82
Motor vehicle	9	19	15	19	61	117	254	202	36	608	17	37	29	5	88
Outdoor burning Industry	0	0	0	0	0	1	3	0	0	4	0	1	0	0	1
muustiy	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
Total	10	21	22	22	74	226	409	861	237	1732	26	49	78	20	172

References

Dasch, J. M. 1982: Particulate and Gaseous Emissions from Wood Burning Fireplaces, Environ. Sci. and Technol., Vol. 16, No 10, pg 639-645.

Environment Australia, 2001, National Pollutant Inventory, http://www.environment.gov.au/epg/npi/handbooks/aedmanuals/aedmanuals.html

ESR, 1999, Otago inventory of domestic emissions. Unpublished report prepared for Otago Regional Council.

GVRD 1998, 1995 Emission inventory for the Lower Fraser Valley Airshed: Technical Appendix: Detailed Listing of Methodology and Results. Greater Vancouver Regional District and Fraser Valley Regional District.

Lamb, C., 1999, Christchurch Home Heating Survey: A survey of domestic home heating methods and fuels in the Christchurch metropolitan area. Environment Canterbury Report U00/34.

Ministry for the Environment, 1994, Ambient Air Quality Guidelines. Ministry for the Environment, Wellington.

Ministry for the Environment, 2002. Ambient Air Quality Guidelines for New Zealand. Ministry for the Environment.

Ministry of Transport, 1998, Vehicle fleet emission control strategy – final report. Ministry of Transport.

NIWA, 1998, Christchurch inventory of Total Emissions. Environment Canterbury Report R98/20.

NIWA, 1999, Natural emissions for the Waikato Region. NIWA report AK98154.

Scott, A., 2004, Impact of strategies to reduce residential heating emissions in Christchurch - an update, Unpublished, draft Environment Canterbury Report.

Stern, C. H.; Jaasma, D.R.; Shelton, J.W.; Satterfield G. 1992: Parametric Study of Fireplace Particulate Matter and Carbon Monoxide Emissions, Journal Air Waste Manage. Assoc. Vol 42, No6, pg 777-783.

USEPA AP42, 2001, Emissions Database http://www.epa.gov/ttn/chief/ap42/

Appendix One: Home Heating Questionnaire

- 1. (a) Do you use an **OPEN FIRE** in your house on a TYPICAL Winter's day or night? **YES () NO ()** *If* **NO GO TO Question 3**.
 - (b) Do you use it:

(c)

(d)

(e)

(f)

(g)

(h)

,	i. Ir ii. D iii. E iv. C	n the mo Day time Evening Dvernigh	orning (betw (between 1 (between 4 (between 4	veen 6ar 10am an pm and 10pm a	n and 10 am) d 4pm) 10pm) nd 6am)	YES (YES (YES (YES ()))	NO (NO (NO (NO (• • •
Do you use wood o	on your op	oen fire?)	YES ()	NO If NO G	GO TO Part (f)				
How much wood do an average Winter	o you use r 's day. I	e per day Better и	/? (ask the vould be K	m how G/DAY):	many pieces	of wood (logs) th	ey us	se on	
Do you buy your we COLLECT IT ()	ood from BOTH (a wood	merchant o) /f BOTH a	or collect ask %Co	it yourself? E	BUY IT(% Bought _)		
Do you use coal on	your ope	en fire?	YES () NO	()	If NO GO TO	Question 2.				
How much coal do average Winter's of) you use day. Bet	e per da t ter wou	y? (ask the Id be KG/D	em hov DAY):	/ many bucl	tets of coal the	əy ı	use o	n an	
What type of coal	l do you u	use?								

- 2. (a) Do you use any type of **ELECTRICAL HEATING** in your house on a TYPICAL winter's day or night? **YES() NO()** If NO GO TO Question 3.
 - (b) Do you use it

i.	In the morning (between 6am and 10 am)	YES () NO ()
ii.	Day time (between 10 am and 4pm)	YES () NO ()
v.	Evening (between 4pm and 10 pm)	YES () NO ()
vi.	Overnight (between 10 pm and 6am)	YES () NO ()

- 3. (a) Do you use any type of **GAS HEATING** in your house on a TYPICAL winter's day or night? **YES () NO ()** *If NO GO TO Question 4.*
 - (b) Is it flued or unflued gas heating? FLUED() UNFLUED() BOTH()
 - (c) Do you use it:

i.	In the morning (between 6am and 10 am)	YES () NO ()
ii.	Day time (between 10 am and 4pm)	YES () NO (Ĵ
vii.	Evening (between 4pm and 10pm)	YES () NO ()
viii.	Overnight (between 10pm and 6am)	YES () NO ()

(d) How much gas do you use **?(ask them for the size of the gas bottle(s) and how often they would refill them** -(sizes are 2kg, 2.5kg, 3kg, 4.5kg, 9kg, 18kg, 20kg, 45k, 90kg)

Size#1	Freq# 1	
Size#2	Freq# 2	

- 4. (a) Do you use a **LOG BURNER**? *(This is not a multifuel burner ie does not burn coal)* in your house on a TYPICAL Winter's day or night. **YES () NO ()** *If NO GO TO Question 5.*
 - (b) How old is your log burner? 10 yrs+ () 5- 10 yrs old () Less than 5 yrs ()
 - (c) What type of wood burner:

Make: _____

Model:

Doc # 963048

5.

6.

(d)	Do vou use it:				
(u)	i. In the morning (between 6am and 10 am) YES () NO () ii. Day time (between 10 am and 4pm) YES () NO () ix. Evening (between 4pm and 10 pm) YES () NO () x. Overnight (between 10 pm and 6am) YES () NO ()				
(e)	How much wood do you use per day? (ask them how many pieces of wood (logs) they use on an average winter's day. Better would be KG/DAY):				
(f)	Do you buy your wood from a wood merchant or collect it yourself? BUY IT () COLLECT IT () BOTH () // BOTH ask %Collected % Bought				
(a)	Do you use a burner which burns coal as well as wood - ie a MULTI FUEL BURNER (<i>This includes incinerators, pot belly stoves, McKay space heaters etc.</i>) in your house on a TYPICAL winter's day or night? YES () NO () <i>If</i> NO <i>GO TO Question 6</i>				
(b)	How old is your multi fuel burner? 10 yrs+() 5- 10 yrs old() Less than 5 yrs()				
(c)	What type of multi fuel burner is it?				
(d)	Do you use iti.In the morning (between 6am and 10 am) YES ()NO ()ii.Day time (between 10am and 4pm)YES ()NO ()xi.Evening (between 4pm and 10pm)YES ()NO ()xii.Overnight (between 10pm and 6am)YES ()NO ()				
(e)	How much wood do you use per day? (ask them how many pieces of wood (logs) they use on an average winters day. Better would be KG/DAY):				
(f)	Do you buy your wood from a wood merchant or collect it yourself? BUY IT () COLLECT IT () BOTH () /f BOTH ask %Collected% Bought				
(g)	Do you use coal on your multi fuel burner? YES () NO () If NO GO TO Question 6.				
(h)	How much coal do you use per day? (ask them how many buckets of coal they use on an average Winter's day. Better would be KG/DAY):				
(i)	What type of coal do you use?				
(a)	Do you use an OIL FIRED HEATING system in your house on a TYPICAL Winter's day or night? YES () NO() <i>If</i> NO <i>GO TO</i> END.				
(b)	Do you use it: i. In the morning (between 6am and 10 am) YES () NO () ii. Day time (between 10am and 4pm) YES () NO () xiii. Evening (between 4pm and 10pm) YES () NO () xiv. Overnight (between 10pm and 6am) YES () NO ()				
(c)	How much oil do you use?(litres)				