Nutrient Budgets for Waikato Dairy and Sheep/Beef Farms for 1997/98 and 2002/03

Prepared by: Amanda Judge and Stewart Ledgard, Agresearch

For: Environment Waikato PO Box 4010 HAMILTON EAST

ISSN: 1172-4005

June 2004

Document #: 932109

DISCLAIMER: While all reasonable endeavour has been made to ensure the accuracy of the investigations and the information contained in this report, AgResearch expressly disclaims any and all liabilities contingent or otherwise that may arise from the use of the information.

COPYRIGHT: All rights are reserved worldwide. No part of this publication may be copied, photocopied, reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of AgResearch Ltd

Peer reviewed by:

David Wheeler (AgResearch)

Date 22/7/04

Approved for release by: Dr Peter Singleton Initials

Date 22/7/04

Table of Contents

E>	cecuti	ve Summary	vii
1	In	troduction	1
2	OI	ojectives	1
3	M	ethodology	1
4	De	escription of OVERSEER [®] nutrient budget model	1
	4.1	Basis of the OVERSEER [®] nutrient budget model	1
	4.2	Input requirements for the model	2
	4.3	Input data sources	3
	4.4	Assumptions and deficiencies in the input data	4
	4.5	Greenhouse gases	4
5	Re	esults	4
	5.1	Farm input data	5
		MAF Monitor sheep and beef farms	5
		MAF Monitor dairy farms	5
		Dexcel ProfitWatch dairy farms OVERSEER N and P budget data	5 13
		MAF Monitor sheep and beef farms	13
		MAF Monitor dairy farms	16
		Dexcel ProfitWatch dairy farms	16
	5.3	OVERSEER summary data	23
		MAF Monitor sheep and beef farms	23
		MAF Monitor dairy farms	23
		Dexcel ProfitWatch dairy farms	27
6		scussion	29
	6.1	N leaching and N concentration in drainage	29
	6.2	P runoff and farm P status	29
	6.3	Greenhouse gas emissions	31
	6.4	Caution in data interpretation	31
Re	eferen	ices	32

List of Tables

Table 1: Information required by user to obtain a detailed nutrient budget from the	
OVERSEER® nutrient budget model	3
Table 2: Number of Waikato farms used in this evaluation	4
Table 3: MAF Monitor Sheep and Beef Farms 1997/98 - farm input data	6
Table 4: MAF Monitor Sheep and Beef Farms 2002/03 - farm input data	7
Table 5: MAF Monitor Dairy Farms 1997/98 - farm input data	8
Table 6: MAF Monitor Dairy Farms 2002/03 - farm input data	10
Table 7: Dexcel ProfitWatch 1997/98 - farm input data	11
Table 8: Dexcel ProfitWatch 2002/03 - farm input data	11
Table 9: MAF sheep and beef farms 1997/98 - OVERSEER N and P budget data	14
Table 10: MAF sheep and beef farms 2002/03 - OVERSEER N and P budget data	15
Table 11: MAF Monitor Dairy Farms 1997/98 - OVERSEER N and P budget data	17
Table 12: MAF Monitor Dairy Farms 2002/03 - OVERSEER N and P budget data	19
Table 13: Dexcel ProfitWatch 1997/98 - OVERSEER N and P budget data	20
Table 14: Dexcel ProfitWatch 2002/03 - OVERSEER N and P budget data	20
Table 15: MAF Monitor Sheep and Beef 1997/98 - OVERSEER N summary data	21
Table 16: MAF Monitor Sheep and Beef 2002/03 - OVERSEER Summary Data	22
Table 17: MAF Monitor Dairy Farms 1997/98 - OVERSEER Summary Data	24
Table 18: MAF Monitor Dairy Farms 2002/03 - OVERSEER Summary Data	26

Table 19: Dexcel ProfitWatch Dairy Farms 1997/97 - OVERSEER Summary Data
Table 20: Dexcel ProfitWatch Dairy Farms 2002/03 - OVERSEER Summary Data
Table 21: Summary table of the main environmental emissions

28 28 30

Executive Summary

This project involved use of the OVERSEER[®] nutrient budget model to estimate nutrient budgets and environmental emissions from farms in the Waikato region. A 'representative' selection of farms for 1997/98 and 2002/03 included 20 or 21 MAF Monitor sheep and beef farms, and 43 or 10 MAF Monitor dairy farms and 144 or 150 Dexcel ProfitWatch dairy farms, respectively.

Data from dairy farms for 2002/03 compared to 1997/98 indicate that milk production per hectare has increased in association with increased inputs from N fertiliser and brought-in supplementary feed. From the Dexcel ProfitWatch farm summary, this increased intensification was associated with an estimated increase in N leaching/runoff from 33 to 42 kg N/ha/yr and N concentration in drainage from 5 to 7 mg/L in 1997/98 versus 2002/03, respectively.

Nitrogen leaching/runoff losses from sheep and beef farms were about one-quarter of those from dairy farms on a per hectare basis. Differences between years were less clear than for dairy farms, with a similar range in estimates across farms in both years. There was no difference between years in estimated P runoff (average of 1.3 kg P/ha/yr for ProfitWatch farms) from dairy farms. This coincided with lower P fertiliser inputs and farm P surplus in 2002/03 than 1997/98. However, soil Olsen P levels increased from 36 to 43 between 1997/98 and 2002/03, from the Dexcel ProfitWatch data.

Phosphorus runoff apparently increased over time on sheep and beef farms (1.0-1.7 kg P/ha/yr), although this will be due to differences between the years in the sample farms' characteristics of topography and soil type. Fertiliser P inputs and farm P surplus were the same for both years.

Total greenhouse gas emissions per hectare increased by 15% from dairy farms between 1997/98 and 2002/03. This was due to greater N_2O and CO_2 emissions associated with the increased N fertiliser and supplementary feed inputs.

Sheep and beef farms showed an apparent increase in greenhouse gas emissions of 12% over time due to an increase in estimated methane emissions coinciding with an increase in stocking rate.

The farms used as part of both the MAF monitor program and the Dexcel ProfitWatch database, are chosen to be representative of the farms in the region. Despite this, some caution needs to be applied in interpretation of the results. This applies to the MAF Monitor farm data in particular, where the relatively small farm numbers (especially dairy farms) coincided with a wide variation between farms in calculated environmental emissions. Nevertheless, this wide variation indicates the potential for farm management practices to influence the magnitude of emissions and to increase overall farm efficiency.

1 Introduction

Nutrient losses from farmland are a contributor to excessive nutrient levels in ground and surface water. Better farm management can be used to reduce the amount of nutrients lost from the farm and into water bodies. A nutrient budget is one way of indicating amounts of nutrients that may be lost from the farm, and whether or not nutrients are accumulating in the soil. A series of nutrient budgets done over time can also indicate whether changing farm practises are having an impact on the amounts of nutrients lost to the environment.

Greenhouse gas emissions are also of interest to environmental issues and reflect aspects of the efficiency of productivity, and energy and nitrogen use on farms (Wheeler *et al.* 2003).

2 **Objectives**

- To determine the nutrient budgets for dairy farms and sheep and beef farms in the Waikato region for the years 1997/98 and 2002/03.
- To estimate the amounts of nutrients lost from the farms, nitrate-N concentrations in drainage water, and greenhouse gas emissions.

3 Methodology

The OVERSEER[®] nutrient budget model (version 5.10) was used on farm data sets for 2002/03 which covered:

- 21 sheep and beef farms from the MAF farm monitoring system for the Waikato region
- 10 dairy farms from the MAF farm monitoring system for the Waikato region
- 150 dairy farms from Dexcel's ProfitWatch system for the Waikato region.

It was also used on the original 1997/98 data set of MAF monitor farms covering dairy and sheep and beef farms (Roberts 1999).

Data from farms was summarised for soil test, fertiliser inputs, and nutrient and greenhouse gas losses to the environment.

Of particular interest to Environment Waikato are N leaching losses and P runoff losses from farms, Olsen P levels and greenhouse gas emissions.

4 Description of OVERSEER[®] nutrient budget model

4.1 Basis of the OVERSEER[®] nutrient budget model

Nutrient budgets are useful tools for assessing the sustainability of nutrient flows within a farm and for highlighting potential negative environmental impacts of nutrient use. The OVERSEER[®] nutrient budget program is a decision support model to help users develop nutrient budgets and evaluate implications of alternative management practices. The current version (updated in June 2003) of the model covers the four

main nutrients; nitrogen (N), phosphorus (P), potassium (K) and sulphur (S), as well as the cations calcium (Ca), magnesium (Mg) and sodium (Na). It also includes an acidity budget and inventories of greenhouse gas emissions and energy use (Wheeler *et al*, 2003).

Nutrient budgets are a form of resource accounting. In its simplest form, resource accounting is a measure of inputs and outputs of the item of interest across a defined boundary. In the OVERSEER[®] nutrient budget program, the defined boundary is the farm or blocks within the farm. Greenhouse gas inventories have similar boundaries and can be derived from the same inputs required to develop nutrient budgets, which greatly facilitated their inclusion into the program.

The OVERSEER[®] nutrient budget program is an empirical, annual time-step model. It provides estimates of the fate of the nutrients in kg/ha/year, ignoring year-to-year variability due to weather. The model contains a number of databases for nutrient concentrations of fertiliser, animals and products. These are used for estimating the nutrient inputs or outputs on a per-hectare basis.

4.2 Input requirements for the model

The model is site-specific and therefore requires the entry of site-specific data (Table 1). Data entry is usually by simple tab-based selections. The model can be run for several sites or blocks and the results can be integrated on an area-weighed basis. Thus, a farmer could run the model for different productive blocks and integrate them on a farm basis. Similarly, a policy-maker could use it to integrate different areas within a catchment, region or country (Ledgard *et al.* 1999).

Table 1: Information required by user to obtain a detailed nutrient budget from the OVERSEER® nutrient budget model

Block Information

Site information

- Area (ha)
- Slope (steep, easy, rolling, flat, border-dyke)
- Soil group (pumice, volcanic, sedimentary, podzol, sand or peat)
- Soil drainage (free- or poor-draining)
- Distance from coast (km)
- Rainfall and irrigation (mm/year)

Soil test information

- Olsen P
- Quick-test K, Ca, Mg and Na
- Organic S test

Fertiliser

- Sulphate-S applied last year
- Rate of nutrients or fertilisers for current 12 months
- N and P applied in high risk months

Farm Information

System information

- Product yield (milksolids, wool, velvet)
- Pasture development status (developing, developed, highly developed)

Management information

- Stocking rate and animal type
- Feed brought-in or sold (t DM/ha, type)
- Dairy effluent management
- Winter management practices

4.3 Input data sources

Data was supplied by Dexcel for average Waikato dairy farms from their ProfitWatch database, Peter Gault for MAF dairy monitor farms and Darren McNae, AgFirst, for MAF sheep and beef monitor farms.

Table 2: Number of Waikato farms used in this evaluation

	1997/98	2002/03
MAF Monitor Sheep and Beef	20	21
MAF Monitor Dairy	43	10
ProfitWatch Dairy	144	150

4.4 Assumptions and deficiencies in the input data

- Unless information was supplied on effluent disposal, it was assumed that the farm used effluent ponds. When the dairy farm effluent was applied to land, it was assumed that the effluent block received the same rates of fertiliser application as the rest of the farm.
- Where soil test data was not provided, typical soil test values were used from the OVERSEER[®] model based on means for an average farm obtained from aggregated data from soil samples submitted to e-lab.limited and its predecessors.
- Where the soil S test result was provided as Sulphate-S, OVERSEER[®] was used to estimate the organic S value.
- Distance from the coast, where not provided, was assumed to be 40 km. The model is relatively insensitive to this parameter after this distance, but this assumption would underestimate S, K, Ca, Mg and Na inputs on farms near the coast.
- The ProfitWatch data (Table 2) was supplied as averages for all farms (owners and sharemilkers), and as averages for both the top and the bottom 25% of farms on a milksolids production/ha basis. Consequently no statistical information is provided for this data.
- No information was provided on application of lime on any farms.

4.5 Greenhouse gases

The greenhouse gas inventory is based on models and algorithms used for New Zealand's greenhouse gas national inventory, but with modifications to include on farm management practices (Wheeler *et al.* 2003). Methane emissions are based on a metabolic energy intake model developed by Clark (2001). Nitrous oxide (N₂O) emissions are based on the New Zealand IPCC-based inventory, which includes the use of emission factors for direct N₂O losses from excreta, fertiliser and effluent, and indirect losses from leached N and volatilised ammonia (de Klein *et al.* 2001). The amounts of effluent, leached N and volatilised ammonia are estimated from the associated N budget model. Carbon dioxide (CO₂) emissions from fuel and electricity, processing and some indirect contributions (e.g. fertiliser manufacturing) are largely based on the data of Wells (2001).

5

Results

The individual nutrient budget printouts showing the estimated nutrient inputs and outputs, and the summary report for each farm are presented in separate Appendices. The 2002/2003 season data are presented in Appendices 1, 2 and 3 for the MAF monitor sheep and beef farms, MAF monitor dairy farms and ProfitWatch dairy farms, respectively. The corresponding data for the 1997/98 season are presented in Appendices 4, 5 and 6.

5.1 Farm input data

5.1.1 MAF Monitor sheep and beef farms

The average soil test results for the MAF monitor sheep and beef farms tended to be lower for Olsen P and QT K at 18 and 6 in 2002/03 compared to 21 and 8 in 1997/98, respectively. The reverse trend was evident for Organic S at 15 and 11, respectively (Tables 3 and 4). However, there was a wide variation between farms with a similar magnitude in both years.

The average fertiliser inputs for the four main nutrients (kg/ha/yr) of N, P, K and S were 9, 31, 8 and 28, respectively in 2002/03. These values were very similar to those in 1997/98.

Data from 1997/98 was obtained from the previous report by Roberts (1999). Some of the input details have changed slightly with the latest version of the OVERSEER[®] nutrient budget program. As a consequence, some information is presented in a different manner than required for inputting into the latest version of the program. One example of this is for sheep and beef farms. Previously, data was provided for total stock units and only the dominant animal type was presented. Thus, it was not possible to identify the actual sheep and beef stock units for 1997/98 and they are presented as either only sheep or only beef.

5.1.2 MAF Monitor dairy farms

On average the soil test results for the MAF Monitor dairy farms for 2002/03 were 44 for Olsen P, 10 for QT K and 16 for Organic S. These values tended to be higher than those from the 1997/8 farms of 37 for Olsen P, 9 for QT K and 12 for Organic S (Table 5 and 6). However, there was wide variation with a 3-10 fold difference between lowest and highest soil test values across farms.

The average fertiliser inputs in 2002/03 for the four main nutrients (kg/ha/year) of N, P, K and S were 160, 44, 71 and 55 respectively. The N and K inputs were both higher than the average 1997/98 values, which were 36 kg N/ha and 60 kg K/ha. Inputs for P and S in 2002/03 were lower than the average 1997/98 values of 53 kg P/ha and 58 kg S/ha.

5.1.3 Dexcel ProfitWatch dairy farms

The average soil Olsen P value for all 150 ProfitWatch farms in 2002/03 was 43, with the average for the top 25% producing farms being 50 and the average for the lower 25% being 39. The average Olsen P values from 1997/98 farms were all lower at 36, 41 and 31 for the average, upper and lower producing farms, respectively (Tables 7 and 8).

The average annual fertiliser inputs for all farms in 2002/03 were 125 kg N/ha, 50 kg P/ha, 54 kg K/ha and 58 kg S/ha. Nitrogen inputs were almost two-fold higher than the 1997/98 average of 68 kg N/ha/year. In contrast, fertiliser P, K and S inputs were higher in 1997/98 at 62 kg P/ha, 75 kg K/ha and 67 kg S/ha respectively.

		So	il Test F	tesult	Fertili	ser Inpi	uts (kg/ł	ha/year)	-	Productio	n
Farm	Farm size (ha)	Olsen P	ат к	Organic S	N	Ρ	к	s	Wool yield (kg)	Sheep SU	Beef St
4	316	18	9	10	0	18	9	23	5478	3655	
5	166	20	8	7	30	36	3	4	1826	1895	
8	350	30	4	7	0	32	6	32	11564	3143	
10	230	20	9	10	0	16	0	21	9444	2630	
20	165	13	8	8	0	44	0	56			1345
21	390	15	5	7	0	24	23	30	4695	2734	
22	305	24	14	12	0	27	5	35			3248
23	493	15	9	5	3	47	6	16	12107	2398	
24	190	30	9	25	0	14	0	18	1330	1510	
46	158	20	9	12	6	33	3	0	4033	2373	
47	199	18	9	6	0	42	0	54	5051	2401	
48	245	20	5	8	0	34	0	44	10247	2633	
50	163	18	10	7	0	28	28	36			1379
62	377	28	10	25	0	29	28	36	3393	337	
63	118	29	8	7	0	25	0	32			433
90	223	18	10	13	23	34	7	41	4643	2585	
96	240	30	10	11	10	36	3	28	5696	1426	
97	96	22	9	10	0	15	36	19	864	945	
98	240	20	4	25	38	68	91	79	16337	3999	
99	205	20	9	14	0	20	5	25	10.005335933	2011/2011/2012	2366
Average	243	21	8	11	6	31	13	31	6447	2311	1754
Minimum	96	13	4	5	0	14	0	0	864	337	433
Maximum	493	30	14	25	38	68	91	79	16337	3999	3248
Std dev	101	5	2	6	11	13	22	18	4497	971	1079

Table 3: MAF Monitor Sheep and Beef Farms 1997/98 - farm input data

		So	il Test F	Result	Fertili	ser Inp	uts (kg/l	ha/year)		Productio	n
Farm	Farm size (ha)	Olsen P	Q Т К	Organic S	N	Ρ	к	S	Wool yield (kg)	Sheep SU	Beef SL
1	612	17	2	8.5	0	23	0	29	16000	3550	2876
2	584	20	4	14.2	0	27	0	35	17000	3562	2862
3	380	15	3.3	8.7	5	23	0	29	12000	1900	1900
4	323	8	6	13	5	0	0	0	7000	1034	1034
5	732	12	13	17.9	2	23	0	29	32000	3001	3001
6	585	17	14	10.2	18	27	19	25	20053	2925	4037
7	120	23	8.5	8	29	27	0	1	3000	624	864
8	300	27	5.5	16.5	3	29	14	27	12500	1830	2160
9	465	22	8	13.6	5	26	0	29	15000	2790	2325
10	452	18	9	21.5	0	28	0	36	10000	2170	3978
11	178	30	7	8	9	29	0	32		356	2136
12	320	15	6	20	7	23	23	29	3500	1056	3104
13	630	10	5	17	0	27	0	35	13000	3843	2583
14	600	12	4	20	0	27	0	35	16500	3780	2520
15	440	12	5	27	31	41	0	30	11600	2112	2948
16	155	20	4.5	22.6	0	74	0	0	4900	930	822
17	214	20	7	15	2	26	0	29	4500	1434	770
18	442	20	5	4.5	5	70	40	76	8000	1459	3050
19	280	20	6	23.2	9	54	77	70	7900	1680	1316
20	500	14	4	8	32	25	0	1	10000	2550	2800
21	424	22	3	18.7	32	30	0	2	16000	3053	2671
Average	416	18	6	15	9	31	8	28	12023	2173	2369
Minimum	120	8	2	4.5	0	0	0	0	3000	356	770
Maximum	732	30	14	27	32	74	77	76	32000	3843	4037
Std dev	172	6	3	6	12	16	19	20	6799	1073	959

Table 4: MAF Monitor Sheep and Beef Farms 2002/03 - farm input data

	Farm	Soil	Test	Result	Fertilis	ser Input	ts (kg/ha	/year)	Proc	duction	Supplement
Farm	Farm size (ha)	Olsen P	QT K	Organic S	N	Р	к	s	Yield kg MS	Stocking rate (cows/ha)	(t wet)
4	54	30	8	20	33	72	131	130	52800	3.63	
5	.57	33	9	20	10	39	88	50	46600	3.33	
9	55	39	2	10	68	31	44	63	29751	2.85	70
30	40	50	11	6	58	101	99	131	40245	3.48	
35	50	48	6	22	166	50	70	39	57942	4.84	92
40	50	56	13	9	110	72	41	27	43300	4.00	
42	62	40	10	10	59	78	133	95	69000	3.37	160
43	80	35	13	20	46	64	64	72	72500	3.61	1000000
52	56	25	8	7	0	39	0	51	36398	2.79	
54	91	32	5	14	0	41	58	52	66050	2.67	
55	67	26	12	9	7	53	53	59	50000	4.37	185
56	49	55	6	10	0	76	108	97	39116	2.98	C CONTRACTOR
57	77	30	6	20	90	62	52	26	61000	3.83	
58	78	16	6	3	38	39	32	24	32470	2.76	38
60	57	40	10	20	119	89	0	67	54000	4.39	0.0000000
61	60	38	20	17	48	53	0	5	39500	3.67	
63	57	44	15	15	69	51	44	84	45600	4.02	
64	47	52	11	7	0	46	66	59	38670	3.62	
65	98	43	3	16	120	55	55	99	98000	3.95	98
66	62	60	6	20	53	16	39	39	51500	3.60	
67	53	28	7	8	68	57	28	6	41500	3.74	
68	81	30	10	20	136	123	59	69	57500	3.33	
69	84	35	10	20	39	41	73	53	57500	3.11	
70	90	46	13	10	0	39	56	50	61887	2.91	
71	60	35	8	8	0	23	33	30	31350	2.65	
72	44	17	10	10	0	18	25	23	14829	3.70	
74	63	27	6	9	0	33	48	43	42000	3.46	

Table 5: MAF Monitor Dairy Farms 1997/98 - farm input data

Table 5 continued

	Fame	Soil	Test	Result	Fertilis	ser Input	ts (kg/ha	/year)	Proc	luction	Supplements
Farm	Farm size (ha)	Olsen P	QT K	Organic S	N	Ρ	к	S	Yield (kg MS)	Stocking rate (cows/ha)	(t wet)
75	60	40	15	7	0	46	63	58	76000	5.00	
76	119	28	9	9	0	55	79	71	117000	4.48	52
77	64	30	12	8	22	66	108	80	42500	3.75	1.000
78	41	50	8	20	0	47	67	60	34400	4.05	
79	116	40	4	10	0	40	58	52	84000	3.35	8
81	41	40	10	9	0	73	105	94	53300	4.20	23
83	83	36	10	20	0	42	60	54	18200	1.17	
84	70	28	8	5	80	50	69	37	54500	3.26	
85	38	27	7	11	45	83	47	48	36000	3.13	
87	284	35	9	13	0	55	78	70	278000	4.24	
88	40	30	6	11	23	25	0	33	26300	3.23	
89	142	30	7	8	44	49	97	74	79000	2.76	
91	110	35	9	13	0	56	80	72	110100	4.51	
92	55	30	8	10	0	39	56	51	38500	3.20	
93	81	55	5	17	0	47	67	60	67500	4.46	
94	74	27	8	5	0	40	57	51	42000	3.11	
Average	73	37	9	12	36	53	60	58	57868	4	17
Minimum	38	16	2	3	0	16	0	5	14829	1.17	0
Maximum	284	60	20	22	166	123	133	131	278000	5	185
Std dev	40	10	3	5	44	21	31	27	40750	0.7	42

	Farmer	So	il Test R	esult	Fertili	ser Inp	uts (kg/h	ia/year)	Proc	duction	Supplements
Farm	Farm size (ha)	Olsen P	QT K	Organic S	N	Ρ	к	s	Yield (kg MS)	Stocking rate (cows/ha)	(t DM)
2	56	39	16	12	217	7	5	0	53380	3.04	20
7	106	30	6	45	90	53	97	80	89975	2.88	
14 ^a	56	21	8	8	160	41	37	45	49929	3.34	1000000
35	82	38	4	10	170	26	65	25	90000	2.74	169
42ª	82	50	8	10	146	78	136	99	96928	2.54	298
43	79	60	14	23	186	51	51	24	81420	2.91	78
63	57	45	20	8	146	49	35	65	49860	3.16	56
65	96	50	6	17	228	44	169	49	119680	3.54	157
68"	80	58	12	11	125	45	114	56	74865	2.71	5
70	70	51	9	11	135	44	0	111	77880	3.14	3
Average	76	44	10	16	160	44	71	55	78392	3.00	98
Minimum	56	21	4	8	90	7	0	0	49860	2.54	3
Maximum	106	60	20	45	228	78	169	111	119680	3.54	298
Std dev	17	12	5	11	42	18	56	35	22580	0.3	103

Table 6: MAF Monitor Dairy Farms 2002/03 - farm input data

^a Farms with effluent applied to land

	Farm			Soil Test	Fertilis	er Input	s (kg/ha	a/year)	Proc	luction	1	ght in ements
Farm	size (ha)	Olsen P	N	Ρ	к	s	Yield (kg MS)	Stocking rate (cows/ha)	Hay Equiv. (t DM)	Silage Equiv. (t DM)		
Average	90	36	68	62	75	67	76892	2.8	13.8	18.9		
Upper 25 %	85	41	92	64	74	69	91814	3.2	25.0	44.6		
Lower 25 %	94	31	37	56	67	59	58967	2.42	11.5	6.1		

 Table 7: Dexcel ProfitWatch 1997/98 - farm input data

Table 8: Dexcel ProfitWatch 2002/03 - farm input data

Farm	Farm	Soil Test	Fertiliser Inputs (kn/ha/year)				Proc	luction	Brought in Supplements	
Farm	size (ha)	Olsen P	N	Р	к	s	Yield (kg MS)	Stocking rate (cows/ha)	Hay Equiv. (t DM)	Silage Equiv. (t DM)
Average	91	43	125	50	54	58	91773	2.94	20.1	55.6
Upper 25 %	79	50	157	51	66	68	98882	3.43	18.6	97.1
Lower 25 %	96	39	93	46	51	48	72312	2.49	9.9	14.5

5.2 OVERSEER N and P budget data

5.2.1 MAF Monitor sheep and beef farms

Average atmospheric N inputs from clover and rain were similar in both years at 60-67 kg N/ha (Tables 9 and 10) and represented the dominant N input at 7-10 times that from N fertiliser.

Losses through N outputs in the form of product removal were similar in both years at 11-12 kg N/ha and equated to 14-18% of total N inputs.

The average N outputs through atmospheric gaseous losses, leaching/runoff, and immobilisation were 17, 10 and 38 kg N/ha, respectively for 2002/03. These values tended to be slightly higher than those seen in 1997/98 at 14, 8 and 27 kg N/ha, respectively.

Losses through P output in product averaged 2 kg P/ha in both years. Estimated P runoff tended to be higher in 2002/03 than 1997/98 at 1.7 versus 1.0 kg P/ha, respectively (also summarised in Table 21).

	Inputs		NO	utputs			P Outpu	ıts
Farm	Atmospheric N (clover & rain)	Product (meat & wool)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching /runoff	Immobilisation	Product	Runoff/ leaching	Immobilisation absorption
4	67	13	16	8	29	2	0.5	20
5 8	53	12	20	7	43	2	1.4	16
8	50	13	12	6	19	2	1.8	29
10	66	17	15	8	26	2	0.5	21
20	53	10	15	8	27	2	0.6	16
21	41	8	9	5	19	1	0.5	17
22	75	13	18	12	32	3	0.5	25
23	28		6	4	13	1	0.6	18
24	49	8 8	10	6	25	1	0.4	20
46	84	17	22	11	40	3	0.5	22
47	74	15	14	10	35	2	0.2	21
48	62	16	13	8	24	2	0.7	22
50	60	10	13	10	26	3	0.6	20
62	74	10	14	6	19	2	1.3	28
63	36	4	4	4	5	1	1.0	19
90	74	14	19	10	23	2	0.6	20
96	32	9	10	4	19	1	0.8	30
97	54	10	16	5	24	2	1.1	16
98	82	26	23	19	51	3	1.3	23
99	81	14	16	15	36	3	0.8	21
Average	60	12	14	8	27	2	1.0	21
Minimum	28	4	4	4	5	1	0.2	16
Maximum	84	26	23	19	51	3	1.8	30
Std dev	17	5	5	4	11	0.7	0.4	4

Table 9: MAF sheep and beef farms 1997/98 - OVERSEER N and P budget data

	Inputs		NO	utputs			P Outpu	uts
Farm	Atmospheric N (clover & rain)	Product (meat & wool)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching /runoff	Immobilisation	Product	Runoff/ leaching	Immobilisation absorption
1	63	11	15	8	29	2	1.8	13
2	66	9	16	9	32	2	2.1	15
	59	8	15	6	35	2	2.1	12
3 4	47	7	12	5	28	1	1.1	8
5	72	11	17	7	38	2	1.8	11
6	67	13	17	10	45	2	2.2	18
7	69	12	17	19	50	3	1.5	23
	80	14	17	13	38	3	2.1	26
8 9	64	12	16	10	32	2	1.5	23
10	84	14	19	10	41	3	1.6	19
11	86	15	22	11	47	4	1.8	29
12	84	13	22	14	43	3	0.8	14
13	61	10	16	5	30	2	0.9	11
14	62	11	17	7	27	2	0.9	12
15	61	12	22	11	47	2	1.1	12
16	68	12	15	10	31	2	1.3	23
17	60	10	14	6	32	2	3.3	14
18	63	10	14	11	33	2	1.7	23
19	61	11	12	11	35	2	2.7	21
20	58	11	17	15	48	2	1.4	16
21	70	14	19	17	52	3	2.1	22
Average	67	11	17	10	38	2	1.7	17
Minimum	47	7	12	5	27	1	0.8	8
Maximum	86	15	22	19	52	4	3.3	29
Std dev	10	2	3	4	8	1	0.6	6

Table 10: MAF sheep and beef farms 2002/03 - OVERSEER N and P budget data

5.2.2 MAF Monitor dairy farms

Atmospheric N inputs from clover and rain were 91 kg N/ha in 2002/03 and 160 in 1997/98 (Tables 11 and 12). The lower N₂ fixation in 2002/03 will be due to higher N fertiliser application leading to substitution of fertiliser N uptake by clover for N₂ fixation (Ledgard *et al.* 2001).

Losses through N outputs in the form of product removal were slightly higher in 2002/03 than in 1997/98 at 79 and 71 kg N/ha, respectively. The loss from transfer to lanes and effluent ponds were slightly lower at 9 compared to 13 kg N/ha in 1997/98, but this will be due to the required assumption that all farms in 1997/98 used effluent ponds whereas the 2002/03 data accounted for known farms with land application of effluent.

The average N outputs through atmospheric gaseous losses, leaching/runoff, and immobilisation were 72, 42 and 64 kg N/ha, respectively in 2002/03. These values tended to be higher than those seen in 1997/98 at 54, 33 and 26 kg N/ha. While N leaching losses have apparently increased over time, the relatively small number of dairy farms in 2002/03 means that care is needed in interpreting this data.

Losses through P outputs were similar for both years with product removal, transfer, and runoff/leaching in 2002/03 being 14, 2 and 1 kg P/ha, respectively (13, 3, and 1 in 1997/98).

5.2.3 Dexcel ProfitWatch dairy farms

For all the ProfitWatch farms, the atmospheric N inputs through clover and rain were 109 and 120 kg N/ha in 2002/03 and 1997/98, respectively (Tables 13 and 14).

Losses through N outputs in the form of product losses, transfer to lanes and shed, atmospheric gaseous losses, leaching/runoff and immobilisation at 80, 12, 62, 40 and 51 kg N/ha all tended to be higher in 2002/2003 than in 1997/98, with the latter being 69, 11, 47, 32 and 33 kg N/ha, respectively.

These trends are seen in all the outputs for N and P for both the upper and lower 25% producing farms. Outputs of N and P from the upper 25% producing farms were 30-70% higher than from the lower 25% producing farms.

	Inputs			N Outputs				P	Outputs	
Farm	Atmospheric N (clover & rain)	Product (milk, meat)	Transfer (to lanes, dairy)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching/ runoff	Immobilisation	Product	Transfer	Runoff/ leaching	Immobilisation absorption
4	179	82	13	54	31	32	15	3	1.7	29
5	162	70	13	48	30	13	13	3	0.3	30
9	89	48	9	51	19	36	9	2	1.6	21
30	165	83	14	62	39	24	15	3	0.4	44
35	173	99	19	88	68	73	18	4	1.4	3.9
40	155	76	15	77	48	49	14	4	0.4	46
42	162	90	15	59	44	29	16	3	0.4	36
43	166	77	13	57	35	29	14	3	0.9	31
52	138	56	11	45	21	7	10	2	0.2	18
54	128	59	9	34	21	6	10	2	0.2	29
55	194	78	15	59	29	36	14	3	1.0	26
56	157	67	12	9	23	7	12	3	0.5	29
57	127	67	12	69	29	40	12	2	1.5	20
58	114	49	9	44	19	32	9	2	0.5	17
60	169	83	17	75	59	54	15	4	0.4	37
61	132	62	12	52	27	27	11	2	0.4	23
63	165	71	14	67	37	43	13	3	0.9	37
64	176	71	13	48	30	15	13	3	1.3	41
65	130	81	14	78	36	48	15	3	2,3	23
66	158	72	14	58	39	29	13	3	0.5	45
67	152	69	14	62	37	38	13	3	0.2	27
68	112	62	13	70	47	57	11	3	0.3	32
69	137	60	11	47	25	34	11	3	1.6	30
70	144	59	10	40	23	11	11	3	0.9	37
71	125	47	9	33	18	18	9	2	1.5	29
72	173	66	13	50	31	13	12	2	0.1	17
74	162	61	12	46	29	12	11	3	0.2	25

Table 11: MAF Monitor Dairy Farms 1997/98 - OVERSEER N and P budget data

Table 11: Continued

	Inputs			N Outputs	E.			P	Outputs	
Farm	Atmospheric N (clover & rain)	Product (milk, meat)	Transfer (to lanes, dairy)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching/r unoff	Immobilisation	Product	Transfer	Runoff/ leaching	Immobilisation absorption
75	255	107	19	71	45	12	19	4	0.3	35
76	211	86	16	58	36	21	16	4	0.8	27
77	168	67	14	54	34	21	12	3	0.2	29
78	190	74	14	52	32	18	14	3	1.3	40
79	160	63	12	38	31	16	12	3	1.6	33
81	236	106	17	62	41	11	19	4	0.3	36
83	190	72	13	50	28	27	13	3	1.8	31
84	115	64	11	60	27	33	11	2	0.3	20
85	152	78	12	47	29	32	14	3	1.5	27
87	207	84	16	59	37	11	15	3	0.3	32
88	143	58	11	45	28	24	11	2	0.8	26
89	115	49	10	49	24	26	9	2	0.3	20
91	217	87	16	52	42	20	16	4	1.4	31
92	153	61	11	42	26	14	11	2	0.8	27
93	183	75	14	63	23	8	14	3	1.8	27
94	145	55	11	29	32	18	10	2	1.7	24
Average	160	71	13	54	33	26	13	3	1.0	30
Minimum	89	47	9	9	18	6	9	2	0.1	17
Maximum	255	107	19	88	68	73	19	4	2.3	46
Std dev	34	14	3	14	10	15	3	0.7	0.6	8

	Inputs			N Outputs				ł	Outputs	
Farm	Atmospheric N (clover & rain)	Product (milk, meat)	Transfer (to lanes, dairy)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching/ runoff	Immobilisation	Product	Transfer	Runoff/ leaching	Immobilisation absorption
2	83	77	13	91	53	73	14	3	0.2	32
7	116	69	11	50	40	35	12	2	0.4	28
14"	103	74	0	69	46	75	13	0	0.6	21
35	81	86	13	73	43	71	15	3	0.9	31
42"	68	91	0	57	37	74	16	0	0.4	42
43	88	82	12	79	46	69	14	3	1.4	46
63	98	72	12	71	38	62	13	3	0.9	37
65	102	99	16	110	47	77	17	4	1.8	25
68*	100	75	0	61	37	54	13	0	0.4	46
70	74	61	9	59	30	52	11	2	1.0	40
Average	91	79	9	72	42	64	14	2	1.0	35
Minimum	68	61	0	50	30	35	11	0	0.2	21
Maximum	116	99	16	110	53	77	17	4	1.8	46
Std dev	15	11	6	18	7	14	2	2	0.5	9

Table 12: MAF Monitor Dairy Farms 2002/03 - OVERSEER N and P budget data

^a Farms with effluent applied to land

Table 13: Dexcel ProfitWatch 1997/98 - OVERSEER N and P budget data

	Inputs			N Outputs				P	Outputs	
Farm	Atmospheric N (clover & rain)	Product (milk, meat)	Transfer (to lanes, dairy)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching/ runoff	Immobilisation	Product	Transfe r	Runoff/ leaching	Immobilisation/ absorption
Average	120	69	11	47	32	33	12	2	1.3	31
Upper 25 %	135	86	13	59	39	40	15	3	1.3	35
Lower 25 %	104	52	9	35	24	24	9	2	1.0	28

Table 14: Dexcel ProfitWatch 2002/03 - OVERSEER N and P budget data

	Inputs			N Outputs				P	Outputs	
Farm	Atmospheric N (clover & rain)	Product (milk, meat)	Transfer (to lanes, dairy)	Atmospheric (NH ₃ , N ₂ O, N ₂)	Leaching/ runoff	Immobilisation	Product	Transfer	Runoff/ leaching	Immobilisation/ absorption
Average	109	80	12	62	40	51	14	3	1.3	36
Upper 25 %	123	99	15	76	51	57	17	3	1.5	40
Lower 25 %	94	61	9	47	31	42	11	2	1.4	32

		Nutr	ient loss in	dices		Gree	enhouse ga	is emission	15
Farm	N leached	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N ₂ O	CO2	Tota
		(kg/ha/yr)		(%)	(mg N/L)	(kg	CO ₂ -equiva	lent/ha/yea	r)
4	8	54	19	20	2	2729	901	81	3711
5	7	71	37	14	1	2693	956	157	3806
8	6	37	33	27	1	2119	583	67	2769
10	8	49	17	25	2	2698	871	73	3642
20	8	49	45	17	2	1845	615	97	2557
21	5	33	26	20	1	1654	547	77	2278
22	12	62	27	17	3	2411	883	87	3381
23	4	23	49	27	1	1148	385	82	1615
24	6	41	16	16	1	1875	707	54	2636
46	11	72	33	19	2	3543	1210	118	4871
47	10	59	43	20	2	2846	1081	109	4036
48	8	46	35	26	1	2535	822	93	3450
50	10	50	28	17	2	1915	711	92	2718
62	6	64	30	14	1	2338	660	81	3079
63	4	32	27	12	1	831	299	49	1179
90	10	83	35	14	2	2735	1061	169	3965
96	4	33	38	22	1	1402	511	100	2013
97	5	44	16	19	1	2322	643	68	3033
.98	19	94	68	22	1	3931	1596	330	5857
99	15	67	20	17	2	2613	985	81	3679
Average	8	53	32	19	2	2309	801	103	3214
Minimum	4	23	16	12	1	831	299	49	1179
Maximum	19	94	68	27	3	3931	1596	330	5857
Std dev	4	18	13	5	0.6	748	303	61	1084

Table 15: MAF Monitor Sheep and Beef 1997/98 - OVERSEER N summary data

			Nutrient lo	oss indices		Gree	enhouse ga	s emission	15
Farm	N leached	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N_2O	CO2	Tota
		(kg/ha/yr)		(%)	(mg N/L)	(kg (CO2-equiva	lent/ha/yea	ir)
1	8	52	24	17	1	2480	724	58	3262
2	9	57	28	14	1	2598	771	65	3434
3	6	56	24	13	1	2362	491	72	2925
4	5	45	2	14	<1	1890	395	37	2322
5	7	63	24	15	1	2907	583	69	3559
6	10	72	28	15	1	2811	685	130	3626
7	19	86	27	13	1	2930	1282	168	4380
8	13	68	29	17	1	3142	968	88	419
9	10	57	27	17	1	2598	801	77	3476
10	10	70	28	16	1	3213	637	73	3923
11	11	80	28	16	2	3309	708	101	4118
12	14	79	23	14	2	3072	1122	124	4318
13	5	51	28	17	1	2409	457	63	292
14	7	51	28	18	1	2480	713	64	325
15	11	80	42	13	1	2717	1009	170	389
16	10	56	75	18	1	2669	793	98	356
17	6	52	27	17	1	2432	481	66	297
18	11	57	71	15	1	2410	769	153	3333
19	11	59	55	16	1	2527	825	172	352
20	15	80	26	12	1	2693	1060	150	3903
21	17	88	30	14	1	3189	1207	161	4557
Average	10	65	32	15	1	2707	785	103	3594
Minimum	5	45	2	12	<1	1890	395	37	2323
Maximum.	19	88	75	18	2	3309	1282	172	4557
Std dev	4	13	16	2	<1	352	248	44	558

Table 16: MAF Monitor Sheep and Beef 2002/03 - OVERSEER Summary Data

5.3 OVERSEER summary data

5.3.1 MAF Monitor sheep and beef farms

The range in N leaching losses was similar for 1997/98 and 2002/03, but the average for the latter tended to be higher (Tables 15 and 16). Average farm N surplus also tended to be higher in 2002/03 than 1997/98.

Farm P surplus was the same in both years at 32 kg P/ha/yr. N conversion efficiency at 19% in 1997/98 was higher than the 15% in 2002/03.

Total greenhouse gas emissions tended to be higher in 2002/03 than 1997/98 at 3594 and 3214 kg CO_2 -equivalent/ha/year, respectively. About three-quarters of emissions occurred as methane.

5.3.2 MAF Monitor dairy farms

The MAF monitor dairy farms were similar in both years for estimated losses of N and P to waterways from effluent ponds, with average values equivalent to 3 and 1 kg/ha/yr, respectively (Tables 17 and 18). Average N leaching, farm N surplus and the nitrate concentration in drainage have all seen higher trends from 33, 127 kg N/ha/yr and 6 mg N/L in 1997/98 to 42, 186 and 10 respectively in 2002/03. Average farm P surplus and N conversion efficiency at 36 kg P/ha and 30% in 2002/03 tended to be lower than in 1997/98 at 44 kg P/ha and 36%, respectively.

The average estimates of total greenhouse gas emissions were slightly higher in 2002/03 than 1997/98 at 8878 and 8628 kg CO_2 -equivalent/ha/year, respectively. This was due to an apparent increase in both N_2O and CO_2 , whereas methane decreased.

			Nutrie	ent loss ind	lices			Green	nhouse g	as emiss	ions
Farm	N leached	N loss to waterways from ponds	P loss to waterways from ponds	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N ₂ O	CO2	Tota
		0	kg/ha/yr)			(%)	(mg N/L)	(kg C	O ₂ -equiva	alent/ha/y	year)
4	31	3.1	0.6	130	60	39	5	6279	2213	561	9053
5	30	3	0.8	104	32	40	6	5517	2134	384	8035
9	19	2.6	0.6	116	27	29	4	3763	1837	479	6079
30	39	3.3	1.0	139	91	37	8	6188	2729	651	9568
35	68	4.4	1.3	248	36	29	12	7828	4223	978	1302
40	48	3.6	1.1	189	61	29	10	6407	3323	676	1040
42	44	3.5	1.0	147	67	38	7	6120	2794	731	9645
43	35	3.1	0.9	135	51	36	7	6093	2485	513	9091
52	21	2.5	0.6	83	32	40	5	4576	1680	236	6492
54	21	2.1	0.6	70	35	46	5	4104	1490	297	5891
55	29	3.5	1.0	140	42	36	6	6606	2175	426	9207
56	23	2.7	0.8	90	69	43	6	5149	1853	394	7396
57	29	2.9	0.7	151	53	31	5	5310	2567	592	8469
58	19	2.1	0.5	105	33	32	5	4252	1586	348	6186
60	59	4	1.1	205	77	29	9	7020	3715	727	1146
61	27	2.7	0.7	118	46	34	6	5024	2192	404	7620
63	37	3.3	1.0	162	41	31	10	6275	2770	535	9580
64	30	3	0.9	104	37	40	6	5896	2074	336	8306
65	36	3.3	0.9	176	45	32	6	5745	5957	801	1250
66	39	3.2	1.0	139	6	34	7	5893	2644	446	8983
67	37	3.3	0.8	151	47	31	10	5927	2753	497	9177
68	47	3	0.8	186	115	25	8	5316	3099	778	9193
69	25	2.5	0.8	117	33	34	4	5006	1861	410	7277
70	23	2.4	0.8	85	32	41	6	4807	1671	282	6760
71	18	2	0.6	78	18	38	3	4143	1297	203	5643

Table 17: MAF Monitor Dairy Farms 1997/98 - OVERSEER Summary Data

Table 17 continued

	(in		Nutrie	ent loss inc	lices			Green	nhouse g	as emiss	ions
Farm	N leached	N loss to waterways from ponds	P loss to waterways from ponds	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N ₂ O	CO2	Tota
		(kg/ha/yr)			(%)	(mg N/L)	(kg C	O ₂ -equiv	alent/ha/y	year)
72	31	3.1	0.7	107	9	38	7	5791	2194	250	8235
74	29	2.9	0.8	101	26	38	6	5410	2049	271	7730
75	45	4.5	1.3	147	30	42	10	8464	3155	459	1207
76	36	3.8	1.1	131	46	39	8	7107	2526	435	1006
77	34	3.2	0.9	123	57	35	7	5862	2391	428	8681
78	32	3.3	1.0	116	37	39	7	6401	2269	342	9012
79	31	2.7	0.8	97	33	39	4	5367	1935	298	7600
81	41	4.1	1.2	131	60	45	8	7613	2803	549	1096
83	28	3.1	1.0	118	34	38	5	6318	1996	324	8638
84	27	2.6	0.6	131	44	33	7	4758	2284	563	7605
85	29	2.7	0.8	120	73	39	4	5675	2075	524	8274
87	37	3.7	1.0	123	44	41	8	6942	2604	399	9945
88	28	2.6	0.7	108	17	35	6	5072	1971	289	7332
89	24	2.4	0.6	110	43	31	5	4326	1921	416	6663
91	42	3.7	1.1	130	45	40	5	7290	2626	409	1032
92	26	2.6	0.7	93	33	40	5	5148	1816	287	7251
93	23	3.3	0.9	108	37	41	6	6107	2163	357	8627
94	32	2.5	0.7	90	34	38	2	4859	1804	265	6928
Average	33	3	1.0	127	44	36	6	5762	2412	455	8628
Minimum	18	2	0.5	70	6	25	2	3763	1297	203	5643
Maximum	68	4.5	1.3	248	115	46	12	8464	5957	978	1302
Std dev	10	0.6	0.2	35	21	5	2	1047	807.5	172	1755

			Nutri	ent loss in	dices			Gree	nhouse ga	as emissi	ons
Farm	N leached	N loss to waterways from ponds	P loss to waterways from ponds	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N ₂ O	CO2	Total
			(kg/ha/yr)			(%)	(mg N/L)	(kg C	O ₂ -equiva	lent/ha/ye	ear)
2	53	3	0.8	229	-2	25	14	5194	3605	967	9766
7	40	2.7	0.7	137	44	34	5	4922	2550	648	8120
14 [°]	46	0	0	190	31	28	10	5490	3287	813	9590
35	43	3	0.8	199	20	30	9	4654	2938	1078	8670
42°	37	0	0	167	80	35	8	4094	2706	1295	8095
43	46	2.9	0.9	206	42	28	11	5049	3166	1023	9238
63	38	2.8	0.8	183	41	28	10	4931	2809	857	8597
65	47	3.8	1.1	251	36	28	11	5967	3834	1347	11148
68°	37	0	0	151	35	33	10	4940	2840	774	8554
70	30	2	0.6	149	36	29	8	3980	2322	704	7006
Average	42	2	1	186	36	30	10	4922	3006	951	8878
Minimum	30	0	0	137	-2	25	5	3980	2322	648	7006
Maximum	53	3.8	1.1	251	80	35	14	5967	3834	1347	11148
Std dev	7	2	0.4	37	21	3	2	592	470	238	1130

Table 18: MAF Monitor Dairy Farms 2002/03 - OVERSEER Summary Data

^a Farms with effluent applied to land

5.3.3 Dexcel ProfitWatch dairy farms

For all ProfitWatch farms including the upper and lower 25% of producing farms, there was a trend for nutrient loss indices to increase in 2002/03 compared to 1997/98 (Tables 19 and 20). In contrast, the farm P surplus and N conversion efficiency decreased.

Greenhouse gas emissions all showed higher trends in 2002/03 than in 1997/98, with the average total emissions increasing from 7530 in 1997/98 to 8635 kg CO_2 -equivalent/ha/year in 2002/03.

Table 19: Dexcel ProfitWatch Dairy Farms 1997/97 - OVERSEER Summary Data

			Nutri	ent loss in	dices		-	Greenhouse gas emissions					
Farm	N leached	N loss to waterways from ponds	P loss to waterways from ponds	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N ₂ O	CO2	Total		
			(kg/ha/yr)			(%)	(mg N/L)	(kg C	O ₂ -equiva	alent/ha/ye	ar)		
Average	32	2.5	0.7	123	54	36	5	4745	2184	601	7530		
Upper 25 %	39	3.1	0.9	152	54	36	7	5532	2645	779	8956		
Lower 25 %	24	2	0.6	92	50	36	4	3867	1643	415	5925		

 Table 20: Dexcel ProfitWatch Dairy Farms 2002/03 - OVERSEER Summary Data

Farm	Nutrient loss indices								Greenhouse gas emissions			
	N leached	N loss to waterways from ponds	P loss to waterways from ponds	Farm N surplus	Farm P surplus	N conversion efficiency	Average nitrate conc in drainage	Methane	N ₂ O	CO2	Total	
			(kg/ha/yr)	(%)	(mg N/L)	(kg CO2-equivalent/ha/year)						
Average	40	2.8	0.8	164	41	33	7	5091	2713	831	8635	
Upper 25 %	51	3.5	1	199	40	33	9	5925	3288	1063	10276	
Lower 25 %	31	2.2	0.6	129	39	32	5	4210	2154	603	6967	

6 Discussion

6.1 N leaching and N concentration in drainage

Data from dairy farms for 2002/03 compared to 1997/98 indicate that milk production per hectare has increased in association with increased inputs from N fertiliser and brought-in supplementary feed. From the Dexcel ProfitWatch farm summary, this increased intensification was associated with an estimated increase in N leaching/runoff from 32 to 40 kg N/ha/yr and N concentration in drainage from 5 to 7 mg/L in 1997/98 versus 2002/03, respectively (summarised in Table 21).

Estimates of N leaching from the OVERSEER[®] nutrient budget model have been validated against a range of field studies, and include some N immobilisation into soil organic matter. If soil organic N was 'saturated', the apparent effects can be estimated within the model by selecting 'highly developed' status. If this was done for the average ProfitWatch farms in 2002/03, it would result in an estimated increase in N leaching from 40 to 51 kg N/ha/yr. However, there is considerable uncertainty around the latter value and estimation of 'N saturation' status in the field is difficult due to high variability in soil C and N status.

Nitrogen leaching/runoff losses from sheep and beef farms were about one-quarter of those from dairy farms on a per hectare basis (Table 21). Differences between years were less clear than for dairy farms, with a similar range in estimates across farms in both years.

6.2 P runoff and farm P status

There was no difference between years in estimated P runoff from dairy farms. This coincided with lower P fertiliser inputs and farm P surplus in 2002/03 than 1997/98. However, soil Olsen P levels increased from 36 to 43 between 1997/98 and 2002/03, from the Dexcel ProfitWatch data.

Phosphorus runoff apparently increased over time on sheep and beef farms (Table 21), although this will be due to differences between the years in the sample farms' topography, with no farms being classified as steep in 1997/98 but nearly one-third of farms being steep in 2002/03. The steeper slopes give rise to increased P runoff risk. Additionally, a greater proportion of farms in 2002/03 were classified as having sedimentary soils, which are also prone to greater P runoff than farms on ash soils (Morton *et al.* 2003). Fertiliser P inputs and farm P surplus were the same for both years.

	Year	N leaching/ runoff	Average nitrate conc in drainage (mg N/L)	P runoff /leaching	Total GHG (kg CO ₂ - equivalent/ha/year)
MAF Sheep and Beef	1997/98	8 (4-19)	2 (1-3)	1.0 (0.2-1.8)	3214 (1179-5857)
	2002/03	10 (5-19)	1 (<1-2)	2.0 (0.8-3.3)	3594 (2322-4557)
MAF Dairy	1997/98	33 (18-68)	6 (2-12)	1.0 (0.1-2.3)	8628 (5643-13029)
	2002/03	42 (30-53)	10 (5-14)	1.0 (0.2-1.8)	8878 (7006-11148)
Dexcel ProfitWatch	1997/98	32 (24-39)	5 (4-7)	1.3 (1-1.3)	7530 (5925-8956)
	2002/03	40 (31-51)	7 (5-9)	1.3 (1.4-1.5)	8635 (6967-10276)

Table 21: Summary table of the main environmental emissions

6.3 Greenhouse gas emissions

Total greenhouse gas emissions per hectare increased by 15% from dairy farms between 1997/98 and 2002/03. This was due to greater N_2O and CO_2 emissions associated with the increased N fertiliser and supplementary feed inputs. The latter include the emissions associated with manufacturing of N fertiliser and with the production of supplementary feed (Wheeler *et al.* 2003).

Sheep and beef farms showed an apparent increase in emissions of 12% over time due to an increase in estimated methane emissions coinciding with an increase in stocking rate.

6.4 Caution in data interpretation

The farms used as part of both the MAF monitor program and the Dexcel ProfitWatch database, are chosen to be representative of the farms in the region. Despite this, some caution needs to be applied in interpretation of the results, as the total dairy farms from these sources are only 160. This is only a small percentage of the greater than 4000 dairy farms in the South Auckland region.

This applies to the MAF Monitor farm data in particular, where the relatively small farm numbers (especially dairy farms) coincided with a wide variation between farms in calculated environmental emissions. Nevertheless, this wide variation indicates the potential for farm management practices to influence the magnitude of emissions and to increase overall farm efficiency.

References

Clark, H. 2001: Ruminant methane emissions: a review of the methodology used for national inventory estimations. Report for Ministry of Agriculture and Fisheries, Wellington.

de Klein, C.A.M.; Clark, H. 2002: Potential mitigation options for reducing methane and nitrous oxide emissions from dairy farms. Pp. 233-246. *In:* Dairy farm soil management Occasional Report No. 15, Fertiliser and Lime Research Centre. Eds Currie L.D. and Loganathan P. Massey University, Palmerston North

Ledgard S.F., Williams P.H., Broom F.D., Thorrold B.S., Wheeler D.M., Willis V.J. 1999: OVERSEERTM – a nutrient budgeting model for pastoral farming, wheat, potatoes, apples and kiwifruit. In: Best soil management practices for production. (Eds. L D Currie, M J Hedley, D J Horne and P Loganathan). Occasional report No. 12. FLRC, Massey University, Palmerston North. pp. 143-152.

Ledgard S.F., Sprosen M.S., Penno J.W., Rajendram G.S. 2001: Nitrogen fixation by white clover in pastures grazed by dairy cows: Temporal variation and effects of nitrogen fertilization. *Plant and Soil* 229:177-187.

Morton, J.D., McDowell, R.W., Monaghan, R.M., Roberts, A.H.C. 2003: Balancing phosphorus requirements for milk production and water quality. *Proceedings of the New Zealand Grassland Association 65:* 111-115.

Roberts, A.H.C. 1999: Pilot Study for Reporting on Soil Health Indicators using existing AgResearch Technologies. NSOF Project Report. AgResearch.

Wells, C. 2001: Total energy indicators of agricultural sustainability: Dairy farming case study. MAF.

Wheeler, D.M.; Ledgard, S.F.; De Klein, C.A.M.; Monaghan, R.M.; Carey, P.L.; McDowell, R.W.; Johns, K.L. 2003: OVERSEER[®] - moving towards on-farm resource accounting. *Proceedings of the New Zealand Grassland Association 65:* 191-194.