Regional Estuary Monitoring Programme: Benthic Macrofauna Communities – April 2001 to April 2002

Southern Firth of Thames and Whaingaroa (Raglan) Harbour.

Prepared by: Stephanie Turner and Nick Carter

For: Environment Waikato PO Box 4010 HAMILTON EAST

12 February 2004

ISSN: 1172-4005

Document #: 916260

Peer reviewed by: MG Meg Graeme Initials Date 29/4/04

Approved for release by: Peter Singleton Initials

Date

14/6/04

Acknowledgements

We are especially grateful to Amy Robinson for her unfailing enthusiasm and assistance with all aspects of the monitoring programme – in particular with fieldwork and sample sorting. We are also grateful to Environment Waikato staff and members of the Hauraki Maori Trust Board Environmental Monitoring Team for assistance with field work; and to Jason Crozier, Clare Hamilton, Doug Bridges, Sheree Gouk and Kelly Oud for assistance with sample sorting and identification. Meg Graeme (Natural Solutions) provided valuable feedback on an earlier version of this report.

Table of Contents

A	Acknowledgements i					
E	xecutive Summary	vii				
1	Introduction	1				
2	Methods2.1Field Sites2.2Sampling Regime2.3Sample Collection and Processing2.3.1Benthic Macrofauna2.3.2Sediment Characteristics2.3.2.1Surficial Sediment Grain-Size2.3.2.2Sediment Organic Matter Content2.3.2.3Sediment Photosynthetic Pigment Concentration2.4Statistical Analysis	2 3 3 4 4 4 4 4				
3	Results3.1Benthic Macrofauna Community Structure3.1.1Southern Firth of Thames3.1.2Whaingaroa (Raglan) Harbour3.2Changes in the Abundance of Individual Species and Taxonomic groups3.2.1Southern Firth of Thames3.2.2Whaingaroa (Raglan) Harbour3.3Changes in the Composition of Indicator Species/Taxa Assemblages3.3.1Southern Firth of Thames3.3.2Whaingaroa (Raglan) Harbour3.4Sediment Characteristics3.4.1Surficial Sediment Grain-Size and Shell-hash3.4.1.2Whaingaroa (Raglan) Harbour3.4.2Sediment Organic Matter Content3.4.2.1Southern Firth of Thames3.4.2.2Whaingaroa (Raglan) Harbour3.4.3Sediment Photosynthetic Pigment Concentration3.4.3.1Southern Firth of Thames3.4.3.2Whaingaroa (Raglan) Harbour3.5.1Southern Firth of Thames3.5.2Whaingaroa (Raglan) Harbour	6 6 7 9 9 12 17 17 24 30 30 31 31 31 32 32 32 35 35				
4	Discussion	35				
5		36				
6 Literature Cited 39						
A	Appendix 1 - Southern Firth of Thames species/taxonomic group abundances					
Appendix 2 - Whaingaroa Harbour species/taxonomic group abundances6						
Appendix 3 - Dry weight of shell-hash 7						
A	ppendix 4 – Sediment organic matter content	83				
A	ppendix 5 - Sediment photosynthetic pigment concentration	85				
Appendix 6 – QA/QC procedures 8						

Figures

- Figure 1: Location of permanent monitoring sites in the southern Firth of Thames.
- Figure 2: Location of permanent monitoring sites in Whaingaroa Harbour.
- Figure 3: Mean (± standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna communities at the permanent monitoring sites in the southern Firth of Thames between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.
- Figure 4: Mean (± standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna communities at the permanent monitoring sites in Whaingaroa Harbour between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.
- Figure 5: The mean (\pm standard error) number of selected indicator species/taxa on each sampling date at each of the permanent monitoring sites in the southern Firth of Thames. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5. Note the different scales on the vertical axes.
- Figure 6: The mean (± standard error) number of selected indicator species/taxa on each sampling date at each of the permanent monitoring sites in Whaingaroa Harbour. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5. Note the different scales on the vertical axis.
- Figure 7: Non-metric multi-dimensional scaling (MDS) ordination of the square-root transformed southern Firth of Thames benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date. Note that axis values are arbitrary and are not given. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.
- Figure 8: Non-metric multi-dimensional scaling (MDS) ordination of the square-root transformed Whaingaroa Harbour benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date. Note that axis values are arbitrary and are not given. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.
- Figure 9: Mean (± standard error) a) median grain-size, b) proportion of mud (< 63 μ m), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content, f) chlorophyll-*a* concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in the southern Firth of Thames between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.
- Figure 10: Mean (± standard error) a) median grain-size, b) proportion of mud (< 63 μ m), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content, f) chlorophyll-*a* concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in Whaingaroa Harbour between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.

2 2

8

7

14

10

24

17

33

34

Page iv

Tables

Table 1:	Details of permanent monitoring sites in southern Firth of Thames and Whaingaroa Harbour.	3
Table 2:	The five most common species/taxonomic groups on each sampling date for each permanent monitoring site in the southern Firth of Thames.	9
Table 3:	The five most common species/taxonomic groups on each sampling date for each permanent monitoring site in Whaingaroa Harbour.	13
Table 4:	ANOSIM pairwise tests of the square-root transformed southern Firth of Thames benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date.	18
Table 5:	BVSTEP analysis to identify the smallest subset of indicator species/taxa whose similarity matrix across all the sample dates at each permanent monitoring site in the southern Firth of Thames correlates with that for the full indicator species/taxa set, at $\rho \ge 0.95$.	20
Table 6:	SIMPER analysis breakdown of average dissimilarity between Sample Dates at each of the permanent monitoring sites in the southern Firth of Thames into contributions from each indicator species/taxa.	21
Table 7:	ANOSIM tests of the square-root transformed Whaingaroa Harbour benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date.	25
Table 8:	BVSTEP analysis to identify the smallest subset of indicator species/taxa whose similarity matrix across all the sample dates at each permanent monitoring site in Whaingaroa Harbour correlates with that for the full indicator species/taxa set, at $\rho \ge 0.95$.	26
Table 9:	SIMPER analysis breakdown of average dissimilarity between Sample Dates at each of the permanent monitoring sites in Whaingaroa Harbour into contributions from each indicator species/taxa.	27
Table 10	2: Recommended 3- and 6-monthly sampling schedule at the five permanent monitoring sites in the southern Firth of Thames.	36
Table 1	1: Recommended 3- and 6-monthly sampling schedule at the five permanent monitoring sites in Whaingaroa Harbour.	36
Table 12	2: List of 26 recommended indicator species/taxa to be monitored in the southern Firth of Thames and Whaingaroa Harbour.	37

Executive Summary

In April 2001 Environment Waikato initiated the Regional Estuary Monitoring Programme at five permanent monitoring sites in both the southern Firth of Thames and Whaingaroa (Raglan) Harbour. It is a long-term programme with the objective of monitoring the temporal changes in intertidal sediment characteristics and benthic macrofauna communities which may occur as a direct or indirect consequence of catchment activity and/or estuary development. This report presents the results of monitoring a suite of 26 "indicator" species/taxa characteristic of the intertidal benthic communities. It is envisaged that the Regional Estuary Monitoring Programme will provide relevant information useful in setting policy and assisting with the sustainable management of estuaries in the Waikato Region.

The five permanent sites in the southern Firth of Thames and Whaingaroa Harbour were sampled in April 2001, October 2001 and April 2002. Two sites from each harbour were additionally sampled in July 2001 and January 2002. Sampling the benthic macrofauna communities involved collecting 12 randomly located core samples from a permanent monitoring plot at each site. On each sampling occasion, replicate bulked sediment samples were collected for grain-size analysis, total organic carbon and total nitrogen content, with surface scrapes collected and analysed for chlorophyll-*a* and phaeophytin content. For each of the permanent monitoring sites, changes in the assemblages of monitored benthic macrofauna species/taxa over time were shown graphically and examined further using a suite of multivariate statistical methods.

Results from the April 2001 to April 2002 monitoring period indicate that there are distinct differences in the benthic macrofauna communities between sites in each estuary. Although each site displayed some changes in assemblage composition over time, there were no apparent clear or systematic temporal patterns evident in either estuary. The most consistently common species/taxa found at sites in the southern Firth of Thames included the polychaetes *Aonides oxycephala* and capitellids, and the bivalves *Austrovenus stutchburyi, Macomona liliana, Nucula hartvigiana* and *Paphies australis.* For Whaingaroa Harbour, consistently common species/taxa included the polychaetes *Aquilaspio aucklandica, Cossura* sp. and capitellids, and the bivalves *Austrovenus stutchburyi* and *Nucula hartvigiana*.

The sediment variable or combination of variables that best explained the assemblage composition for sites in the southern Firth of Thames and Whaingaroa Harbour was the dry weight of shell-hash. However, when analysis included those dates for which chlorophyll-*a* and phaeophytin content was recorded, chlorophyll-*a*, phaeophytin content and the dry weight of shell-hash were the combination of variables that best explained the assemblage composition for the southern Firth of Thames sites.

Since the time-series in this report covers only the first year of monitoring, sufficient data has not yet been collected to enable detailed trend or time-series analysis. Nor is it appropriate at this early stage to ascribe any great significance to apparent trends. Hence, the intention of this report is to provide a baseline from which future year's results can be added to and compared with. In the future it is proposed that information from event-driven catchment studies and monitoring of sites be incorporated into the programme to provide links between catchment processes and estuarine ecosystems.

It is recommended that the monitoring programme continue as outlined in Turner (2001), with a review undertaken after 3-5 years to assess all aspects of the sampling protocol. It is strongly advised that the formal quality control assessment protocols for the sorting, identification and enumeration of benthic core samples continue to be rigorously implemented. Following discussions with scientists at the University of Auckland and NIWA, it is recommended that *Heteromastus filiformis* and other

capitellids be recorded as "Capitellidae", and that *Boccardia ?syrtis*, *Polydora* and *Pseudopolydora* be recorded as "*Pseudopolydora* complex".

1 Introduction

In April 2001 Environment Waikato initiated the Regional Estuary Monitoring Programme at permanent monitoring sites in the southern Firth of Thames and Whaingaroa (Raglan) Harbour. The monitoring programme focuses on intertidal sediments and their benthic macrofauna communities¹ as "indicators" of the health of the Region's estuaries. It is a long-term programme with the objective of monitoring the temporal changes in intertidal sediments and benthic macrofauna communities which may occur as a direct or indirect consequence of catchment activity and/or estuary development. The programme also provides information on the ecology of the intertidal benthic macrofauna communities in these estuaries and will ultimately provide information relevant for estuary management in the Waikato Region. Details of the rationale and design of the programme are provided in full in Turner (2000 and 2001).

The results of the pilot study undertaken in April 2001 were presented in Turner et al. (2002). This report presents the benthic macrofauna community data collected over the first year of the programme between April 2001 and April 2002. The complete sediment data are presented in Gibberd and Carter, (in prep.). Sufficient data have not yet been collected to enable detailed trend or time-series analysis, nor is it appropriate at this early stage in the monitoring programme to attribute any changes to either natural variability or some factor associated with catchment activity or estuary development.

The key variables measured in the Regional Estuary Monitoring Programme are:

- 1 A suite of 26 "indicator" species or taxa² characteristic of intertidal sand-flat benthic macrofauna communities, and selected to represent a variety of taxonomic groups and a range of life-histories, ecological niches and feeding methods (see Hewitt et al. 2001).
- 2 A suite of physical, chemical and biological sediment characteristics:
 - Sediment grain-size;
 - Organic matter content;
 - Benthic microalgal biomass (quantified by chlorophyll-*a* and phaeophytin concentration);
 - Rates of sediment deposition and erosion.

Biological and physical-chemical monitoring must be conducted in parallel as part of an integrated programme of monitoring. Simultaneous monitoring of a number of physical and chemical parameters will enable identification of the relationships between changes in benthic communities and changes in environmental conditions. An integrated monitoring programme will thus be more responsive to detecting trends and changes.

In April 2001, a pilot study was undertaken to establish a baseline for detecting changes in the benthic macrofauna communities and sediment characteristics over time (Turner et al., 2002). The permanent monitoring sites are monitored at 3- or 6-monthly intervals to provide information on temporal (seasonal, annual and longer-term) and spatial patterns of variability in the intertidal sand-flat benthic communities and sediment characteristics.

Note that the Regional Estuary Monitoring Programme is based on similar monitoring programmes designed by NIWA and undertaken by other Regional Councils (e.g., Auckland Regional Council).

¹ "Benthic macrofauna communities" include the variety of organisms (e.g., shellfish, crabs, polychaetes [marine worms], crustaceans) that live in or on the bottom sediments. The "macrofauna" comprises those animals which are retained by a 500 μm mesh sieve.

² Note that the term "taxa" is used here to indicate that some benthic macrofauna can not reliably be identified to species level and that therefore some of the "taxa" or species groups monitored may include more than one species.

2 Methods

The methods are briefly outlined here, for further details see Turner (2001) and Turner et al. (2002).

2.1 Field Sites

Five permanent sites in the southern Firth of Thames (Figure 1) and five sites in Whaingaroa (Raglan) Harbour (Figure 2) have been selected for monitoring. These sites are considered to be representative of the intertidal sand-flats and are distributed throughout the main area of each estuary. The site codes and NZMG GPS coordinates are presented in Table 1.

Figure 2: Location of permanent monitoring sites in Whaingaroa Harbour.

Table 1: Details of permanent monitoring sites in southern Firth of Thames and
Whaingaroa Harbour.

Estuary	Site Name	Site Code	NZMG GPS Co-ordinates (centre)
Firth of Thames	Kaiaua	KA	2714798E 6451008N ³
	Miranda	MI	2717134E 6444339N
	Thames (Gun Club)	GC	2735680E 6446167N
	Kuranui Bay	KB	2734709E 6450707N
	Te Puru	TP	2734655E 6458003N
Whaingaroa	Whatitirinui Island	WI	2679307E 6380510N
	Te Puna Point	TU	2678891E 6378988N
	Okete Bay	OB	2679095E 6377346N
	Haroto Bay	HB	2681515E 6377897N
	Ponganui Creek	Х	2675315E 6378062N

Monitoring plots (approximately 100 m x 100 m) were randomly located at the midintertidal level at each site. Wooden posts mark the corners of each monitoring plot.

2.2 Sampling Regime

All five sites in the southern Firth of Thames and Whaingaroa (Raglan) Harbour⁴ were sampled in April 2001, October 2001 and April 2002. Two of the sites (Miranda and Kuranui Bay in the southern Firth of Thames; Whatitirinui Island and Okete Bay in Whaingaroa Harbour) were also sampled in July 2001 and January 2002.

2.3 Sample Collection and Processing

2.3.1 Benthic Macrofauna

On each sampling occasion 12^5 core samples (13 cm ø, 15 cm deep) were collected from within each monitoring plot. To ensure adequate dispersion of core samples, each plot was divided into 12 equal-sized sectors and one core sample taken randomly (randomly derived Cartesian co-ordinates) from within each sector (see Thrush et al., 1988). To minimise sample interdependence (spatial autocorrelation) samples were not positioned within a 5 m radius of each other. To preclude any effects of localised modification of sampled populations from previous sampling occasions, samples were not taken within 5 m of previous sampling positions over any 6-month period.

After collection, the macrofauna were separated from the sediment by sieving (500 µm mesh), preserved with 70% isopropyl alcohol in seawater and stained with 0.1% Rose Bengal. In the laboratory, the macrofauna were sorted, with indicator species/taxa identified and counted. Indicator bivalve species were measured (shell width) and recorded into different size-classes: *Arthritica bifurca* (< 2 mm; > 2 mm), *Austrovenus stutchburyi* [cockle] (< 5 mm, > 5 mm), *Macomona liliana* [wedge shell] (< 5 mm, 5-15 mm, > 15 mm), *Nucula hartvigiana* [nut-shell] (< 2 mm, > 2 mm), *Paphies australis* [pipi] (< 5 mm, 5-15 mm, > 15 mm), *Theora lubrica* (< 5 mm, > 5mm). The remaining species (i.e., non-indicator species) were classified into major taxonomic groups and counted. Samples were stored in 50% isopropyl alcohol.

From each site where sufficient numbers of shellfish were available, 20-30 adult-sized individuals of selected bivalve species (*Austrovenus stutchburyi*, *Macomona liliana*, and *Paphies australis*) were selected, frozen and retained for condition analysis.⁶ No condition analyses have been undertaken to date.

³ New position of the permanent monitoring plot at Kaiaua (200 m shoreward in October 2001) due to difficulties with access except during low spring tides.

⁴ Note that the site at Ponganui Creek (Site X) was first sampled in October 2001.

⁵ See Hewitt et al. (2001) and Turner (2001) for justification. Note that 15 samples were collected on each sampling occasion during the first year, but only 12 samples were processed.

⁶ Bivalves for condition analysis were removed during sieving and prior to sample preservation in isopropyl alcohol.

After sorting, the remaining non-living material (e.g., broken shells - hereafter referred to as "shell-hash") was dried at 70°C for 48 hours and weighed to provide information on the dry weight of shell-hash at each site.

2.3.2 Sediment Characteristics

At each site, sediment samples were collected from within the monitoring plot for the analysis of a suite of physical and chemical sediment characteristics. Sediment characteristics such as grain-size, organic matter content and photosynthetic pigment concentration, are known to influence the distribution and abundance of benthic macrofauna.

2.3.2.1 Surficial Sediment Grain-Size

Five replicate bulked surface sediment samples were collected from each monitoring plot on each sampling occasion for grain-size analysis. Samples were stored frozen. Samples were pre-treated with 10% hydrogen peroxide to remove organic material and 1M HCl to remove carbonate material. Calgon was added as a dispersant and samples were placed in an ultrasonic bath for 10 minutes to aid disaggregation. Samples were then analysed using a Galai laser sediment analyser.

2.3.2.2 Sediment Organic Matter Content

A sub-sample from each bulked sediment sample was analysed for total organic carbon and total nitrogen content using an automated CHN analyser. Samples were dried and finely ground before analysis. Sediment for total organic carbon analysis was pre-treated with acid to remove carbonate material prior to analysis.

2.3.2.3 Sediment Photosynthetic Pigment Concentration

Five replicate surface sediment scrapes were collected from each monitoring plot on each sampling occasion. Samples were stored in black containers and frozen until analysis. Samples were analysed for chlorophyll-*a* and phaeophytin content. Chlorophyll-*a* was extracted from the sediment by boiling in 95% ethanol and the extract analysed using a spectrophotometer. Acidification was used to separate plant degradation products (phaeophytin) from chlorophyll-*a*.

Due to a laboratory handling error, there are measurements of chlorophyll-*a* and phaeophytin concentration available for the April, July and October 2001 sampling occasions only.

2.4 Statistical Analysis

Changes in the assemblages of indicator benthic macrofauna species/taxa over time at each of the permanent monitoring sites were examined using multivariate statistical methods (PRIMER v5; PRIMER-E Ltd. Plymouth 2001). Non-metric multidimensional scaling (MDS) ordinations based on Bray-Curtis similarities of species/taxa abundance data provides a visualisation of assemblage composition in a two-dimensional plot. The method of non-metric MDS constructs an ordination (or configuration) of the mean species/taxa abundances on different sampling dates at each of the sites, in which sample points are mapped in a specified number of dimensions (in this case two) in such a way that the rank order of the distances between sample points in the ordination reflects the rank order of the corresponding (dis)similarities in the similarity matrix (Clarke and Warwick, 2001). The stress value is a measure of how accurately the ordination preserves the between-sample point relationships in low-dimensional space, with low values (<0.1) indicating a good ordination with no real prospect that a misleading interpretation has been achieved. Plots of the MDS ordinations of the different sites on different sampling dates allow identification of trends or other patterns of change in the assemblages of indicator benthic macrofauna.

Significance testing for differences in assemblage composition between different sampling dates at each of the sites was undertaken using one-way analysis of similarities randomisation tests based on rank similarities of the samples (PRIMER ANOSIM routine [Analysis of Similarities]). This procedure tests the statistical

significance of differences between groups of samples based on the composition of their benthic macrofauna assemblages. The null hypothesis is that there are no differences in assemblage composition on different sampling dates. The ANOSIM global test was used to indicate whether there were significant differences between any of the sampling dates at each site. The global *R* value gives an indication of the extent of any differences, where values range between 0 (indistinguishable) and 1 (well separated).⁷ The significant differences at each site were explored further using ANOSIM pairwise comparison tests. The ANOSIM pairwise comparison test follows on from the global test if significant differences were found to exist, and shows specifically which sampling dates were significantly different from each other as well as the extent of any differences.⁸ For each of these comparisons (Date 1 vs. Date 2, Date 1 vs. Date 3. Date 2 vs. Date 3 etc.) the test statistic (R) is generated, which indicates the relative similarity of the assemblages between the two sampling dates that are being compared. Note that the nominal levels of Type I error ($\alpha = 0.05$, i.e., the error rates per comparison) of these comparisons were not corrected to maintain the error rate per site (i.e., the probability that there will be an error in any of all comparisons) at 0.05. Such procedures would have required the nominal level to be set at $\alpha = 0.017$ for three tests and $\alpha = 0.005$ for 10 tests and would have increased the risk of Type II errors in each comparison.

Other statistical tests used include the PRIMER SIMPER ("similarity percentages") and BVSTEP routines. SIMPER was used to examine the contribution of each indicator species/taxa to the average Bray-Curtis dissimilarity between two sampling dates identified in the MDS plots and ANOSIM results. Those species with high average contributions relative to the standard deviation are considered to be important in the differentiation of assemblages on the different sampling dates. BVSTEP was used to identify the smallest subset of indicator species/taxa which in combination explain most of the pattern observed in the full set of species/taxa. This is (somewhat arbitrarily) taken to be when the Bray-Curtis similarity matrix of the subset of species/taxa. BVSTEP differs from SIMPER analysis in that it looks at all the data from all the sampling dates at once rather than comparing pairs of samples.

A square-root transformation was applied to the data to reduce the influence that dominant species/taxa have on the results. Because only a sub-set of the species/taxa in the communities have been monitored, the dominance of taxa in the sub-set does not necessarily reflect their true dominance in the whole community, so it is appropriate to reduce their influence on the analysis (Morrisey et al., 1999). The MDS ordination was based on the mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date. ANOSIM, SIMPER and BVSTEP analyses used the indicator species/taxa data from each replicate sample collected at each site on each sampling date. The number of individuals of each indicator bivalve species in all the size-classes combined was used in all analyses.

The relationship between multivariate assemblage composition and sediment variables (median grain-size, % mud [<63 µm], and dry weight of shell-hash; total nitrogen and total organic carbon content; chlorophyll-*a* and phaeophytin concentration) was examined using the BIO-ENV routine in PRIMER. Separate analyses were undertaken with and without sediment photosynthetic pigment concentrations for which incomplete data sets were available (see Section 2.3.2.3). BIO-ENV analysis used the mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date and the mean values for sediment variables. Sediment variables methods were log transformed as the BIO-ENV routine requries that environmental variables not show marked skewness across the samples and that the relationships between them are approximately linear. The BIO-ENV routine identifies the subsets of the

⁷ *R* values can be interpreted as follows; R > 0.75 = well separated, R > 0.5 = overlapping but clearly different, R < 0.25 barely separable (Clarke and Gorley, 2001).

⁸ The important message from the ANOSIM pair-wise tests is usually not so much the significance level, but the pairwise *R* values, since this gives an absolute measure of how separated the groups are (Clarke and Gorley, 2001).

environmental variables which yield the best matches between biological (species abundances) and abiotic (sediment variables) (dis)similarity matrices, as measured by Spearman rank correlation (ρ_s). It is important to note that linking patterns in the benthic macrofauna assemblages to those of sediment variables provides only an indication of which sediment characteristics may be important in contributing to the biological pattern, they do not actually prove cause-and-effect. Causality can only be demonstrated by manipulative field or laboratory experiments (Clarke and Warwick, 2001).

3 Results

3.1 Benthic Macrofauna Community Structure

3.1.1 Southern Firth of Thames

The mean total number of individuals and the major taxonomic group composition (including indicator species/taxa and non-indicator species/taxonomic groups) of the intertidal benthic macrofauna communities at each of the permanent monitoring sites in the southern Firth of Thames on each sampling date between April 2001 and April 2002 are presented in Figure 3.

Over the first year of the monitoring programme, the greatest changes in the total number of individuals and taxonomic composition occurred at KA, GC and TP. The total number of individuals and taxonomic composition were relatively consistent between sampling dates at KB and MI. The benthic macrofauna community at KA was numerically dominated by bivalves (65-78% of individuals on all sampling dates). The total number of individuals and the numbers of the three most abundant taxonomic groups (bivalves, polychaetes, and crustaceans) increased between April 2001 and October 2001. These changes may reflect the shoreward relocation in October 2001 of the permanent monitoring plot on the intertidal flat at this site.

The benthic community at GC was numerically dominated by polychaetes in April 2001 and October 2001 (75% of individuals). In April 2002 there was an increase in the total number of individuals and the abundance of non-indicator bivalves (in particular the exotic species *Musculista senhousi*) and crustaceans. Bivalves numerically dominated the community on this sampling date (46% of individuals).

On all three sampling dates, the benthic macrofauna community at TP was numerically dominated by bivalves (94-99% of individuals). There was a decrease in the total number of individuals in October 2001 and April 2002 compared to the first sampling date in April 2001.

The total number of individuals and taxonomic composition were relatively consistent between sampling dates over the first year of the monitoring programme at KB and MI. In April 2001 and July 2001, the community at KB was numerically dominated by bivalves (50-70% of individuals), but for the remainder of the sampling period polychaetes (43-47% of individuals), and to a lesser extent crustaceans (13-20% of individuals), were more abundant in the community. The community at MI was consistently numerically dominated by polychaetes (75-85% of individuals).

The data is included in full in Appendix 1.

Figure 3: Mean (\pm standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna communities at the permanent monitoring sites in the southern Firth of Thames between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.

3.1.2 Whaingaroa (Raglan) Harbour

The mean total number of individuals and the major taxonomic group composition (including indicator species/taxa and non-indicator species/taxonomic groups) of the intertidal benthic macrofauna communities at each of the permanent monitoring sites in Whaingaroa (Raglan) Harbour on each sampling date between April 2001 and April 2002 are presented in Figure 4.

Over the first year of the monitoring programme, there were changes in the total number of individuals, and to a lesser extent taxonomic composition at all five sites, with the greatest changes recorded at TU.

The benthic macrofauna communities at WI and TU were generally consistently numerically dominated by bivalves (43-59% of individuals on all sampling dates at WI; 52-57 % of individuals at TU) and to a lesser extent polychaetes (29-48% of individuals

on all sampling dates at WI; 24-32% at TU) over the first year of the monitoring programme. The community at HB was numerically dominated by polychaetes (41-63% of individuals on all sampling dates), and the community at X by bivalves (57-59% of individuals). The community at OB was numerically dominated by polychaetes (68-80% of individuals on all sampling dates), with crustaceans generally the second most numerically abundant taxonomic group (8-18% of individuals).

The data is included in full in Appendix 2.

Figure 4: Mean (\pm standard error) total number of individuals and major taxonomic group composition of intertidal benthic macrofauna communities at the permanent monitoring sites in Whaingaroa Harbour between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.

3.2 Changes in the Abundance of Individual Species and Taxonomic groups

3.2.1 Southern Firth of Thames

The five most common species/taxonomic groups (indicator and non-indicator) at each of the permanent monitoring sites in the southern Firth of Thames on each sampling date between April 2001 and April 2002 are listed in Table 2.

Table 2:The five most common species/taxonomic groups on each sampling
date for each permanent monitoring site in the southern Firth of
Thames.

	KA	GC	TP	MI	KB
Apr 01	Theora	Aonides	Nucula	Aonides	Austrovenus
	Nucula	Paphies	Austrovenus	Austrovenus	Arthritica
	Aricidea	Polychaetes	Paphies	Macomona	Capitellidae
	Nereidae	Austrovenus	Bivalves	Anthopleura	Aquilaspio
	Austrovenus	Isopods	Paracorophium	Arthritica	Nucula
July 01				Aonides Macomona Austrovenus Nereidae Capitellidae	Austrovenus Capitellidae Aquilaspio Nucula Macomona
Oct 01	<i>Nucula</i>	Aonides	Nucula	Aonides	Capitellidae
	Capitellidae	Paphies	Paphies	Macomona	Austrovenus
	Phoxocephalidae	Austrovenus	Austrovenus	Austrovenus	Paracorophium
	<i>Theora</i>	Polychaetes	Amphipods	Notoacmea	Shrimps/Mysids
	Shrimps/Mysids	Shrimps/Mysids	Notoacmea	Nereidae	Nucula
Jan 02				Aonides Paracorophium Macomona Amphipods Austrovenus	Capitellidae Paracorophium Austrovenus Bivalves Macomona
Apr 02	Austrovenus	Bivalves	Nucula	Aonides	Capitellidae
	Nucula	<i>Aonides</i>	Paphies	Austrovenus	Austrovenus
	Bivalves	Isopods	Amphipods	Macomona	Bivalves
	Magelona	Nereidae	Austrovenus	Nereidae	Paracorophium
	Capitellidae	Polychaetes	Bivalves	Bivalves	Magelona

The most common species/taxonomic groups at MI and TP did not change markedly over the first year of the monitoring programme. At MI the polychaete *Aonides oxycephala* was the most abundant species on every sampling date, with mean abundances varying between 43-51 individuals.core⁻¹. The bivalves *Austrovenus stutchburyi* and *Macomona liliana* were also recorded on every sampling date and were generally the second and third most abundant species, with mean numbers ranging between 1-5 individuals.core⁻¹. Nereid polychaetes were among the most common species on three of the sampling dates with mean abundances of 1-2 individuals.core⁻¹. At TP the three bivalve species (*A. stutchburyi, Nucula hartvigiana* and *Paphies australis*) were consistently among the most abundant species recorded at this site, while unidentified amphipods and bivalves were both among the most common species/taxonomic groups on two sampling dates with mean abundances of 1-2 individuals.core⁻¹. There were large variations in the mean abundances of the three bivalve species: 2-108 *A. stutchburyi* individuals.core⁻¹, 72-208 *N. hartvigiana* individuals.core⁻¹, and 21-30 *P. australis* individuals.core⁻¹.

At GC only two species/taxonomic groups (the polychaete *A. oxycephala* and unidentified polychaetes) were consistently among the most common species/taxonomic groups, with mean abundances of between 83-101 *A. oxycephala* individuals.core⁻¹ and 6-11 unidentified polychaete individuals.core⁻¹. The bivalves *A. stutchburyi* and *P. australis*, and unidentified isopods, were among the most common species/taxonomic groups on two sampling dates. Unidentified bivalves were the most common species/taxonomic group recorded at this site on one occasion, with a mean abundance of 116 individuals.core⁻¹. At KB two species/taxonomic groups (the bivalve

A. stutchburyi and capitellid polychaetes) were consistently among the most common species, with mean abundances of 6-40 *A. stutchburyi* individuals.core⁻¹ and 7-19 capitellid polychaete individuals.core⁻¹. The bivalve *N. hartvigiana* and the corophiid amphipod *Paracorophium* sp. were among the most common species at KB on three sampling dates; and the polychaete *Aquilaspio aucklandica*, the bivalve *M. liliana* and unidentified bivalves were among the most common species/taxonomic groups at this site on two sampling dates.

At KA there was the greatest change in the suite of common species/taxonomic groups over the monitoring period, with only one species (the bivalve *N. hartvigiana*) among the five most common species/taxonomic groups on all three sampling dates. There were large variations in the mean abundance of *N. hartvigiana*: 6-74 individuals.core⁻¹. The bivalves *A. stutchburyi* and *Theora lubrica* and capitellid polychaetes were among the five most common species on two sampling dates. Note that the changes observed between April 2001 and October 2001 at KA may be a reflection of the shoreward relocation of the permanent monitoring plot in October 2001.

The mean abundances of selected indicator species/taxa at each of the sites on each sampling date are shown in Figure 5.

Figure 5: The mean (± standard error) number of selected indicator species/taxa on each sampling date at each of the permanent monitoring sites in the southern Firth of Thames. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5. Note the different scales on the vertical axes.

Figure 5. (cont.)

By examining time-plots of individual species/taxa it is possible to see how their numbers have changed through time at each site. A brief discussion of the patterns of abundance of selected indicator species/taxa at different sites over the monitored period follows. Since the time-series covers a period of only one year, detailed discussion and identification of trends in patterns of abundance through time is still premature. Some of the observed changes in species/taxa abundances may be indicative of seasonal variation and/or longer-term cycles or trends. Information from subsequent years will provide further information regarding the significance and nature of these patterns.

The corophiid amphipod *Paracorophium* sp. was most common at KB and MI, where an increase in abundance was recorded between October 2001 and January 2002, followed by a decrease in abundance in April 2002 (Figure 5(a)). The phoxocephalid amphipods were most common at KA, where they occurred in greatest abundance in October 2001 and in low abundances in April 2001 and 2002 (Figure 5(b)). The cumacean *Colurostylis lemerum* was most common at GC, where an increase in abundance was recorded over the first year of the monitoring programme, with the greatest increase occurring between October 2001 and April 2002 (Figure 5(c)).

The abundance of the bivalve Macomona liliana declined over the first year of the monitoring programme at MI and was reasonably consistent at KB (Figure 5(f)). There was a decrease in the abundance of *Theora lubrica* at KA (Figure 5(i)), with a decrease in the abundance of large (> 5 mm shell length) individuals at this site in October 2001. There was a decrease in the abundance of *Nucula hartvigiana* over the year at TP, in particular of small (< 2 mm) individuals; and an increase at KA, where the greatest abundance occurred in October 2001, again particularly of small individuals (Figure 5(g)). There was a decrease in the abundance of *Paphies australis* at TP and GC over the first year of the monitoring programme (Figure 5(h)). Different size classes were recorded at each site, with individuals < 5 mm and 5-15 mm in length occurring at GC, and individuals > 15 mm occurring at TP. There was a decrease in the abundance of Arthritica bifurca at KB (Figure 5(d)), which was a reflection of a decrease in the abundance of small (< 2 mm) individuals over the year. At KA and GC there was an increase in abundance of *A. bifurca* (Figure 5(d)). This was a reflection of an increase in the abundance of both small (< 2 mm) and large (> 2 mm) individuals at KA and an increase of small individuals at GC. There was a decrease in the abundance of Austrovenus stutchburyi at TP and to a lesser extent at KB, and an increase in abundance at KA over the first year of the monitoring programme (Figure 5(e)). The changes recorded at TP and KB were a reflection of a decrease in the abundance of small (< 5 mm) individuals, and the increase at KA reflected an increase in both small and large (> 5 mm) individuals.

The abundance of some species/taxa of polychaetes was fairly consistent at the sites where they were most common during the first year of the monitoring programme. For example, *Aonides oxycephala* at GC and MI (Figure 5(k)). There was a decrease in the abundance of some polychaete species/taxa at the sites where they were most common. For example, *Aquilaspio aucklandica* decreased in abundance at KB (Figure 5(j)), and *Aricidea* sp. decreased at KA (Figure 5(l)). There was an increase in the abundance of other species. For example, capitellids increased in abundance at KB and KA (Figure 5(m)), *Magelona dakini* increased at KA (Figure 5(n)) and nereids increased at GC (Figure 5(o)). Note that the changes observed between April 2001 and October 2001 at KA may be a reflection of the shoreward relocation of the permanent monitoring plot in October 2001.

3.2.2 Whaingaroa (Raglan) Harbour

The five most common species/taxonomic groups (indicator and non-indicator) at each of the permanent monitoring sites in Whaingaroa (Raglan) Harbour on each sampling date between April 2001 and April 2002 are listed in Table 3.

The most common monitored species/taxonomic groups at four of the sites, TU, HB, X and WI, did not change markedly over the first year of the monitoring programme. At X four species (the bivalves *Austrovenus stutchburyi* and *Nucula hartvigiana*; the polychaete *Aquilaspio aucklandica*; and the limpet *Notoacmea* sp.) were among the most common species on both sampling dates. The abundances of all four species were consistent over the monitored period: 22-33 *A. stutchburyi* individuals.core⁻¹; 22-24 *N. hartvigiana* individuals.core⁻¹; 13-15 *A. aucklandica* individuals.core⁻¹; and 6-7 *Notoacmea* sp. individuals.core⁻¹.

At TU the bivalves *A. stutchburyi* and *N. hartvigiana* and the polychaete *A. aucklandica* were the three most abundant species on every sampling date, with mean abundances varying between 28-48 *A. stutchburyi* individuals.core⁻¹, 18-19 *N. hartvigiana* individuals.core⁻¹ and 14-24 *A. aucklandica* individuals.core⁻¹. The limpet *Notoacmea* sp. was among the most common species on two sampling dates. At HB the bivalve *A. stutchburyi* and the capitellid and nereid polychaetes were consistently among the most common species/taxonomic groups recorded at this site on all the sampling dates, while the bivalves *Arthritica bifurca* and *Macomona liliiana* were both among the most common species on two sampling dates. *Austrovenus stutchburyi*, capitellids and nereids varied in mean abundance between 6-15 individuals.core⁻¹, 14-20 individuals.core⁻¹, and 3-9 individuals.core⁻¹ respectively.

	TU	НВ	Х	WI	OB
Apr 01	Austrovenus Aquilaspio Nucula Notoacmea Anthopleura	Capitellidae Austrovenus Macomona Nereidae Aquilaspio		Austrovenus Capitellidae Macomona Aquilaspio Nereidae	Cossura Capitellidae Aquilaspio Aricidea Euchone
July 01				Austrovenus Capitellidae Macomona Aquilaspio Nereidae	Cossura Gastropods Capitellidae Phoxocephalidae Polychaetes
Oct 01	Austrovenus Aquilaspio Nucula Arthritica Capitellidae	Austrovenus Capitellidae Arthritica Amphipods Nereidae	Austrovenus Nucula Aquilaspio Notoacmea Polychaetes	Austrovenus Capitellidae Macomona Aquilaspio Nucula	Cossura Capitellidae Phoxocephalidae Nereidae Austrovenus
Jan 02				Capitellidae Austrovenus Macomona Nucula Aquilaspio	Cossura Capitellidae Phoxocephalidae Bivalves Polychaetes
Apr 02	Austrovenus Nucula Aquilaspio Notoacmea Macomona	Capitellidae Nereidae Arthritica Austrovenus Macomona	Nucula Austrovenus Aquilaspio Macomona Notoacmea	Austrovenus Capitellidae Nucula Notoacmea Macomona	Cossura Capitellidae Polychaetes Nereidae Theora

 Table 3:
 The five most common species/taxonomic groups on each sampling date for each permanent monitoring site in Whaingaroa Harbour.

At WI three species/taxonomic groups (the bivalves *A. stutchburyi, M. liliana* and capitellid polychaetes) were consistently among the most common on all sampling dates, with mean abundances varying between 24-43 *A. stutchburyi* individuals.core⁻¹, 8-18 *M. liliana* individuals.core⁻¹ and 18-35 capitellid polychaetes individuals.core⁻¹. The polychaete *A. aucklandica* was among the five most common species on four sampling dates, the bivalve *N. hartvigiana* was among the most common on three sampling dates, and nereid polychaetes on two sampling dates.

At OB the polychaete *Cossura* sp. was the most abundant species on every sampling date, with mean abundances varying between 20-29 individuals.core⁻¹. Capitellid polychaetes were also recorded on every sampling date, with mean numbers ranging between 4-13 individuals.core⁻¹. Phoxocephalid amphipods and unidentified

polychaetes were among the most common species/taxonomic groups on three of the sampling dates. There was considerable variability among the other most common species/taxonomic groups on different sampling dates.

The mean abundances of selected indicator species/taxa at each of the sites on each sampling date are shown in Figure 6.

Figure 6: The mean (\pm standard error) number of selected indicator species/taxa on each sampling date at each of the permanent monitoring sites in Whaingaroa Harbour. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5. Note the different scales on the vertical axis.

Figure 6. (cont.)

By examining time-plots of individual species/taxa (Figure 6) it is then possible to see how their numbers have changed through time at each site. A brief discussion of the patterns of abundance of selected species/taxa at different sites over the monitored period follows. Since the time-series covers a period of only one year, detailed discussion and identification of trends in patterns of abundance through time is still premature. Some of the observed changes in species/taxa abundances may be indicative of seasonal variation and/or longer-term cycles or trends. Information from subsequent years will provide further information regarding the significance and nature of these patterns.

There was an increase in the abundance of phoxocephalid amphipods between April 2001 and January 2002, followed by a decline in April 2002 at OB, where they were most common (Figure 6(a)). The lowest abundance of the cumacean *Colurostylis lemerum* was recorded in October 2001 at OB and X, where it was most common, with greater abundances occurring in April 2001 and 2002 (Figure 6(b)).

There were different patterns in the abundance of the limpet *Notoacmea* sp. over the first year of the monitoring programme at the three sites where it was most common (TU, X and WI) (Figure 6(c)). AT TU, abundance was highest in April 2002, with the lowest abundance recorded in October 2001. At X abundance was fairly consistent between October 2001 and April 2002. AT WI, lowest abundance was recorded in July 2001, which increased to April 2002. There was a general decrease in the abundance of the anemone *Anthopleura aureoradiata* over the first year at TU, the site where it was most common, with the highest abundance recorded in April 2001 and the lowest abundance recorded in April 2002 (Figure 6(d)).

The abundance of the bivalve *Macomona liliana* was fairly consistent at four of the sites over the first year of the monitoring programme, but showed a decrease at WI (Figure 6(g)), which was a reflection of a decrease in the abundance of small (< 5 mm shell length) individuals. There was an increase in the abundance over the first year of Theora lubrica at OB where it was most common (Figure 6(i)). This was a reflection of an increase in the abundance of small (< 5 mm) individuals. The abundance of Nucula hartvigiana was fairly consistent at TU and X, where it was most common (Figure 6(h)). At TU however, there was a change in the relative abundances of the different size classes, with small (< 2 mm) individuals decreasing and large (> 2 mm) individuals increasing over the first year of the monitoring programme. There was an increase in the abundance of *N. hartvigiana* at WI (Figure 6(h)), which was primarily a reflection of an increase in the abundance of large individuals. There was an increase in the abundance of Arthritica bifurca at HB and WI (Figure 6(e)). This was a reflection of an increase in the abundance of small (< 2 mm) individuals over the year. At TU highest abundance of A. bifurca was recorded in October 2001, reflecting an increase in the abundance of both small and large (> 2 mm) individuals, and lowest abundances were recorded in April 2001 and April 2002 (Figure 6(e)). The abundance of Austrovenus stutchburyi was highest at TU, WI, X and HB in October 2001, with lower abundances recorded at other times (Figure 6(f)). At all these sites this was a reflection of a peak in the abundance of small individuals (< 5 mm) in October 2001.

The abundances of some species/taxa of polychaetes were fairly consistent during the first year of the monitoring programme at the sites where they were most common. For example, *Aquilaspio aucklandica* at all five sites (Figure 6(j)), *Aonides oxycephala* at TU (Figure 6(k)) and *Cossura* sp. at OB (Figure 6(m)). There was a decrease in the abundance of some polychaete species/taxa at sites where they were most common. For example, *Euchone* sp. decreased in abundance at OB (Figure 6(n)), and paraonids decreased in abundance at WI and OB (Figure 6(q)). There were varying abundances of some species over the first year of the monitoring programme. For example, *Aricidea* sp. at OB and WI (Figure 6(I)) and capitellids at WI, HB and OB (Figure 6(o)). The patterns of abundance of some species/taxa have varied among the sites. Nereids, for example, showed a general decline in abundance at WI over the first year,

an increase at HB, and at TU the greatest abundance was recorded in October 2001, with low abundances occurring in April 2001 and 2002 (Figure 6(p)).

3.3 Changes in the Composition of Indicator Species/Taxa Assemblages

3.3.1 Southern Firth of Thames

The non-metric multi-dimensional scaling (MDS) ordination of the square-root transformed benthic macrofauna assemblage data at each of the five permanent monitoring sites over the period April 2001-April 2002 is presented in Figure 7.

Figure 7: Non-metric multi-dimensional scaling (MDS) ordination of the squareroot transformed southern Firth of Thames benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date. Note that axis values are arbitrary and are not given. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.

The MDS plot provides a visual representation of the relative similarities of the assemblages of indicator species/taxa at the various sites and sampling times. The distances between points (samples) reflects their relative dissimilarity in species composition: points that are close together have very similar assemblages, points which are far apart have few species in common, or the same species but at different levels of abundance. The arrowed lines linking the points indicate the direction of change through time, where the longer the line the more the assemblages have changed. The low stress value (0.07) for the two-dimensional ordination indicates that an acceptable representation of the similarities in assemblage composition was achieved.

The MDS plot shows that the five sites form separate clusters, indicating that the assemblages at each site were distinctly different from each other, and that these differences persisted over the monitored period. The assemblages were most similar at GC and MI, and the assemblage at TP was least similar to those at the other sites.

The MDS plot also shows that at each site some change in assemblage composition occurred over time. The assemblages at GC, MI and KB showed relatively small changes through time during the first year of the monitoring programme, their positions

in the MDS plot changing between sampling dates within a relatively small area of the plot. The largest changes occurred in the assemblages at KA, and to a lesser extent TP, between April 2001 and October 2001 relative to the magnitude of changes among subsequent sampling dates at these sites. Note that the changes observed between April 2001 and October 2001 at KA may be a reflection of the shoreward relocation of the permanent monitoring plot in October 2001.

Within each of the site groups, the points representing the different times of sampling do not appear to exhibit any particularly clear or systematic patterns of change during the first year of the monitoring programme; nor were there consistent patterns of change evident among the different site groups. If for example, there was a consistent trend in the composition of the assemblage at a particular site, we might expect that the points representing different times would show a progression across the plot with points further apart in time lying further apart on the plot. Any patterns of change or trends are expected to become more evident as additional temporal data is added over longer time periods.

The ANOSIM global test was used to indicate whether there were significant differences between any of the sampling dates at each site. Results from the ANOSIM global tests indicate that for all of the five sites, there were significant differences in assemblage composition between sampling dates at the P < 0.01 level. The high global *R* value at KA (0.795)⁹ indicates clear separation between sampling dates. The mid-range global *R* values at KB, TP and GC (0.536, 0.447 and 0.306, respectively) indicates separation with a degree of overlap. The relatively low global *R* value at MI (0.184) indicates that the assemblage compositions were barely separable between sampling dates even though they were found to be significantly different.

The significant differences at each site were explored further using ANOSIM pairwise comparison tests, with results presented in Table 4.

			•	•						
Pairwise	KA	4	G	2	TF	C	М	I	K	3
Comparison	R	Р	R	Р	R	Р	R	Р	R	Р
Apr-01, Jul-01	-	-	-	-	-	-	0.190	**	0.381	**
Apr-01, Oct-01	0.797	**	0.086	ns	0.587	**	0.010	ns	0.846	**
Apr-01, Jan-02	-	-	-	-	-		0.390	**	0.878	**
Apr-01, Apr-02	0.827	**	0.382	**	0.662	**	0.150	**	0.637	**
Jul-01, Oct-01	-	-	-	-	-	-	0.149	**	0.609	**
Jul-01, Jan-02	-	-	-	-	-	-	0.230	**	0.705	**
Jul-01, Apr-02	-	-	-	-	-	-	0.018	ns	0.440	**
Oct-01, Jan-02	-	-	-	-	-	-	0.340	**	0.083	ns
Oct-01, Apr-02	0.749	**	0.465	**	0.011	ns	0.156	**	0.218	**
Jan-02, Apr-02	-	-	-	-	-	-	0.200	**	0.415	**
Oct-01, Apr-02 Oct-01, Jan-02 Oct-01, Apr-02 Jan-02, Apr-02	- - 0.749 -	- - **	- - 0.465 -	- - **	- 0.011 -	- - ns -	0.018 0.340 0.156 0.200	NS ** ** **	0.440 0.083 0.218 0.415	ns ** **

Table 4:ANOSIM pairwise tests of the square-root transformed southern Firth
of Thames benthic macrofauna assemblage data based on mean
abundance values for each indicator species/taxa from all the
samples at each site on each sampling date.

** *P* < 0.01

* *P* < 0.05

ns *P* > 0.05

no pairwise comparison as the site was not sampled on all possible dates

At KA all three sampling dates (April 2001, October 2001, April 2002) were significantly different from each other. The high pairwise R values (R > 0.749) at KA indicate that assemblages were clearly different on each sampling date. The assemblages present at GC in April 2001 and October 2001 were not significantly different from each other, but were both significantly different from April 2002. A look at the pairwise R values for these dates indicates that although they were significantly different, there was a degree of overlap in assemblage composition (R < 0.465). The assemblages present at TP in

⁹ R values can be interpreted as follows; R > 0.75 = well separated, R > 0.5 = overlapping but clearly different, R < 0.25 barely separable (Clarke and Gorley, 2001).</p>

April 2001 were significantly different to those in October 2001 and April 2002, but there was no significant difference between the assemblages in October 2001 and April 2002. The greatest differences at TP occurred between April 2001 and April 2002 (R = 0.662). The assemblages at MI were significantly different among all the sampling dates, except between April 2001 and October 2001, and July 2001 and April 2002. The pairwise *R* values for MI were not particularly high (R < 0.390) indicating a degree of overlap in assemblage composition over all the sampling dates. The assemblages at KB were significantly different for all the sampling dates (April 2001, July 2001, October 2001, January 2002 and April 2002), with the exception that there was no significant difference between October 2001 and January 2002. Furthermore, at KB, four out of the six pairwise comparisons not containing April 2002 had relatively high R values (R > 0.609) indicating clear separation in assemblage composition over these sampling dates. However, R values for all combinations of sampling dates after and including October 2001 at KB were relatively low (R < 0.415), indicating a degree of overlap in assemblage composition for these times.

These results suggest that there are likely to be seasonal and potentially annual differences among the benthic macrofauna assemblages at each of the sites in the southern Firth of Thames. However, there is insufficient information available from just one year of monitoring to assess whether there are consistent patterns of change through time at each site. If these turn out to be real features of the intertidal benthic communities they will need to be considered in any understanding of longer-term patterns of community change.

The smallest combination of indicator species/taxa at each of the sites in the southern Firth of Thames which best accounts for the pattern represented by the full set of indicator species/taxa over the first year of the monitoring programme were determined by BVSTEP, and are listed in Table 5. The five species/taxa which contributed most to determining the Bray-Curtis dissimilarities between all the sampling dates during the first year of the monitoring programme at each of the sites were ascertained using SIMPER, and are listed in Table 6. With respect to the SIMPER results, species/taxa are ordered by their average contribution to the total average dissimilarity between Sample Dates. The percentage of the total dissimilarity that is contributed by each species is also given, and these percentages are then cumulated. Note that only the first five species are listed in each case, which for the southern Firth of Thames sites accounted for between 45-95% of the dissimilarity between sample dates.

The combination of indicator species/taxa that best accounted for the pattern of the full set of indicator species/taxa over the first year of the monitoring programme, and the indicator species/taxa which contributed most to the dissimilarities between sampling dates, differed among the monitoring sites. At TP three species from the suite of 26 indicator species accounted for nearly all of the full pattern ($\rho = 0.990$) (Table 5). Three bivalves (Austrovenus stutchburyi, Nucula hartvigiana and Paphies australis) were consistently important in contributing to the differences in assemblage composition among sampling dates at this site (Table 6). At KA seven species/taxa accounted for nearly all of the full pattern ($\rho = 0.951$) (Table 5). Different suites of species/taxa were important in contributing to the differences among sampling dates at KA, but two species/taxa (the bivalve N. hartvigiana and capitellid polychaetes) were consistently important (Table 6). At GC 8 species/taxa accounted for nearly all of the full pattern ($\rho = 0.954$) (Table 5). Four species/taxa (the polychaetes Aonides oxycephala and nereids; and the bivalves Arthritica bifurca and P. australis) were consistently important in contributing to the differences in assemblage composition among the sampling dates (Table 6). At KB 10 species/taxa from the suite of 26 indicator species accounted for nearly all of the full pattern ($\rho = 0.950$) (Table 5). Four species (the bivalve A. stutchburyi: the polychaetes Aguilaspio aucklandica and capitellids; and corophiid amphipods) were consistently important in contributing to the differences in assemblage composition among sampling dates at KB (Table 6). At MI 12 species/taxa accounted for nearly all of the full pattern ($\rho = 0.950$) (Table 5). Two species (the polychaete A. oxycephala and the bivalve A. stutchburyi) were

consistently important in contributing to the differences in assemblage composition among sampling dates at MI (Table 6).

The differences between the sampling dates were most pronounced at KA (also reflected in the MDS ordination in Figure 7), where the highest average dissimilarity was recorded (i.e., assemblage composition was least similar between sampling dates). Note that this may reflect the shoreward relocation in October 2001 of the permanent monitoring plot on the intertidal flat at this site. Bray-Curtis dissimilarities between sampling dates were smallest (also reflected in the MDS ordination in Figure 7) at GC and MI (i.e., assemblage composition was most similar between sampling dates).

Table 5: BVSTEP analysis to identify the smallest subset of indicator species/taxa whose similarity matrix across all the sample dates at each permanent monitoring site in the southern Firth of Thames correlates with that for the full indicator species/taxa set, at $\rho \ge 0.95$.

Site	Correlation (ρ)	Species/Taxa
КА	0.951	Phoxocephalidae Austrovenus stutchburyi Nucula hartvigiana Aricidea sp. Goniada sp. Capitellidae Nereidae
GC	0.954	Arthritica bifurca Austrovenus stutchburyi Macomona liliana Paphies australis Colurostylis lemurum Notoacmea sp. Nereidae Aonides oxycephala
TP	0.990	Austrovenus stutchburyi Nucula hartvigiana Paphies australis
MI	0.950	Paracorophium sp. Arthritica bifurca Austrovenus stutchburyi Macomona liliana Nucula hartvigiana Colurostylis lemurum Notoacmea sp. Anthopleura aureoradiata Aonides oxycephala Glycera sp. Capitellidae Nereidae
КВ	0.950	Paracorophium sp. Arthritica bifurca Austrovenus stutchburyi Nucula hartvigiana Aquilaspio aucklandica Aonides oxycephala Glycera sp. Capitellidae Magelona dakini Nereidae

Table 6:SIMPER analysis breakdown of average dissimilarity between Sample
Dates at each of the permanent monitoring sites in the southern Firth
of Thames into contributions from each indicator species/taxa.

Nucula hartingiana 5.67 73.92 15.44 26.90 26.90 Nucula hartingiana 5.67 73.92 15.44 26.90 26.90 Phoxocephalidae 0.07 8.33 7.16 12.48 39.38 Articida sp. 3.60 0.25 4.16 7.24 62.97 Articida sp. 3.60 0.25 4.16 7.24 62.97 Mucula hartingiana 5.67 7.93.67 14.68 26.08 26.08 Austrovenus stutchburyi 1.27 53.67 14.68 26.08 26.08 Austrovenus stutchburyi 1.00 14.00 6.23 11.07 52.26 Austrovenus stutchburyi 1.08 53.67 12.13 27.71 27.71 Mucula hartingiana 73.92 37.92 6.85 15.65 43.37 Phoxocephalidae 8.33 0.75 4.19 9.57 52.93 Get Species/Taxa Average Abundance Average Abundance Average Abundance Average Abundance <th>KA</th> <th>Species/Taxa</th> <th>Average Abundance Date 1</th> <th>Average Abundance Date 2</th> <th>Average Dissimilarity</th> <th>Contribution %</th> <th>Cum. Contribution %</th>	KA	Species/Taxa	Average Abundance Date 1	Average Abundance Date 2	Average Dissimilarity	Contribution %	Cum. Contribution %
Solution Capitellidae (H. Illiormis) 1.27 8.58 5.08 8.86 48.24 Ariciclea sp. 3.60 0.25 4.16 7.49 65.73 Marcial barricgiana 5.67 37.92 8.50 14.68 26.08 26.08 Mucula hardrigiana 5.67 37.92 8.50 15.11 41.19 Aristrovenus stuchburyi 1.27 9.08 4.54 8.07 60.33 Arthritica bifurca 0.20 4.83 3.91 6.95 72.92 Magelona dakini 2.75 14.10 3.61 8.25 61.19 Capitellidae (H. Illiormis) 8.58 9.08 3.07 7.00 6.85 15.65 43.37 Macroencephalidae 8.33 0.75 4.19 9.57 52.93 GC Species/Taxa Average Abundance Abundance Date 20.01 0.99 46.92 Magelona dakini 1.07 1.83 2.18 8.24 63.44 Abundance 3.09 <td< td=""><td>ct-01 57.39</td><td><i>Nucula hartvigiana</i> Phoxocephalidae</td><td>5.67 0.07</td><td>73.92 8.33</td><td>15.44 7.16</td><td>26.90 12.48</td><td>26.90 39.38</td></td<>	ct-01 57.39	<i>Nucula hartvigiana</i> Phoxocephalidae	5.67 0.07	73.92 8.33	15.44 7.16	26.90 12.48	26.90 39.38
Theora lubrica Ancidea sp. 11.67 Ancidea sp. 8.00 0.25 4.30 4.16 7.49 7.24 55.73 62.97 Mapelona dakini Capitelidae (H. filliormis) 1.27 1.27 9.85 9.850 15.11 41.19 Magelona dakini Capitelidae (H. filliormis) 1.27 1.27 9.86 4.54 8.07 6.03 6.33 Magelona dakini Capitelidae (H. filliormis) 1.27 9.86 4.54 8.07 6.03 6.95 67.29 Mastrovenus stutchburyi Capitelidae (H. filliormis) 8.33 0.75 4.19 9.57 52.93 Magelona dakini Capitelidae (H. filliormis) 8.58 9.08 3.07 7.00 68.19 Carites australis 10.13 83.17 4.86 18.40 18.4 Annides australis 19.93 1.000 4.63 1.75 3.53 Magelona dakini Capitelidae (H. filliormis) 1.68 0.83 2.18 8.24 63.44 Andrides australis 18.93 12.00 4.63 1.75 3.83 1.68 2.90 1.99 4.63.2 Marcial austrownus stutchburyi <	KA ⊪ity ⊨ O	Capitellidae (H. filiformis)	1.27	8.58	5.08	8.86	48.24
Aricidea sp. 3.60 0.25 4.16 7.24 62.97 Mustrovenus stulchburyi 1.27 53.67 37.92 8.50 15.11 41.19 Magelona dakini 1.00 14.00 6.23 11.07 52.26 Arribitica biturca 0.20 4.83 3.91 6.55 67.29 Mucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Masse stutchburyi 1.08 53.67 12.13 27.71 27.71 Mucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Masse stutchburyi 1.08 27.5 14.00 3.61 8.25 61.19 GC Species/Tax Average Abundance Date 1 Average Date 2 Average Abundance Date 1 Average Dissimilarity Mucula fartvigiana Cum. Contribution % Cum. Contribution % Masse stutchburyi 6.80 6.83 2.18 8.24 63.21 Masse stutchburyi 6.80 6.83 2.18 8.24 63.41	pr-01 simila	Theora lubrica	11.67	8.00	4.30	7.49	55.73
Austrovenus stutchburyi 1.27 53.67 14.68 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 26.08 11.17 52.26 60.33 Athritica bifurca 0.20 4.83 3.91 6.95 67.29 Austrovenus stutchburyi 1.08 53.67 12.13 27.71 26.08 3.07 7.00 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.19 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 68.29 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>Aricidea sp.</td> <td>3.60</td> <td>0.25</td> <td>4.16</td> <td>7.24</td> <td>62.97</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aricidea sp.	3.60	0.25	4.16	7.24	62.97
Mucula hartvigiana 5.67 37.92 8.50 15.11 41.19 Mageiona dakini 1.00 14.00 6.23 11.07 52.26 Capitellidae (H. fillormis) 1.27 9.08 4.54 8.07 60.33 Arthritica bifurca 0.20 4.83 3.91 6.95 67.29 Mucula hartvigiana 73.92 3.665 15.65 43.37 Phoxocephalidae 8.33 0.75 4.19 9.57 52.33 Mageiona dakini 2.75 14.00 3.61 8.25 61.19 GC Species/Taxa Average Abundance Date 1 Average Date 2 Average Abundance Average Abundance Contribution % Contribution % Moreidae 3.93 1.08 2.19 8.28 55.2 Mageiona dakini 1.07 1.83 2.19 8.24 63.44 Annices oxycephala 101.13 85.52 4.93 14.450 14.50 Paphies australis 18.93 10.00 4.57 13.45<	a, 6)	Austrovenus stutchburyi	1.27	53.67	14.68	26.08	26.08
S - S - S - S - S - S - S - S - S - S -	Apr-02 = 56.2	Nucula hartvigiana	5.67	37.92	8.50	15.11	41.19
Capitellidae (H. filiformis) 1.27 9.08 4.54 8.07 60.33 Arthritica bifurca 0.20 4.83 3.91 6.95 67.29 Magelona dakini 27.71 127.71 127.71 127.71 127.71 Nucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Phoxocephalidae 8.33 0.75 4.19 9.57 52.93 Magelona dakini 2.75 14.00 3.61 8.25 61.19 Capitellidae (H. filiformis) 8.58 9.08 3.07 7.00 68.19 Capitellidae (H. filiformis) 8.58 9.08 3.07 7.00 68.19 Capitellidae (H. filiformis) 8.53 1.08 2.00 1.63 1.55 61.19 Capitellidae (H. filiformis) 8.59 1.08 2.10 6.63 1.63 1.64 7.55 GC Anitica bifurca 1.07 1.83 2.18 8.24 63.44 Marcidae 3.93 17.17	KA 8./ arity:	Magelona dakini	1.00	14.00	6.23	11.07	52.26
Arthritica bilurca 0.20 4.83 3.91 6.95 67.29 Mucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Magelona dakini 2.75 14.00 3.61 8.25 61.19 Capitellidae (H. fillormis) 8.88 9.08 3.07 7.00 68.19 GC Species/Taxa Average Abundance Abundance Average Abundance Average Abundance Average Abundance Contribution Dissimilarity Cum. Contribution GC Anides oxycephala 101.13 83.17 4.86 18.40 18.4 Adnides oxycephala 101.13 83.17 4.86 18.40 18.4 Apaphies australis 18.93 10.00 4.57 13.45 27.95 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Columostylis lemurum 1.07 6.75 3.83 11.28 27.95 Mereidae 3.93 1.00 4.57 3.45 27.95 Moreidae 3.9	Apr-0 ssimil	Capitellidae (H. filiformis)	1.27	9.08	4.54	8.07	60.33
Austrovenus stutchburyi 1.08 53.67 12.13 27.71 27.71 Nucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Phoxocephalidae 8.33 0.75 4.19 9.57 52.93 Magelona dakini 2.75 14.00 3.61 8.25 61.19 Capitellidae (H. filiformis) 8.58 9.08 3.07 7.00 68.19 Social S	9	Arthritica bifurca	0.20	4.83	3.91	6.95	67.29
Mucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Mucula hartvigiana 73.92 37.92 6.85 15.65 43.37 Magelona dakini 2.75 14.00 3.61 8.25 61.19 Capitellidae (H. filliormis) 8.58 9.08 3.07 7.00 68.19 GC Species/Taxa Average Date 1 Average Date 1 Average Date 2 Contribution 0 Contribution % Contribution % GC Anides oxycephala 101.13 83.17 4.86 18.40 18.4 Mucula hartvigiana 1.07 1.83 2.19 8.28 55.2 Anides oxycephala 101.13 85.92 4.93 14.50 14.50 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Mereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Mereidae 1.08 17.17	2 78	Austrovenus stutchburyi	1.08	53.67	12.13	27.71	27.71
Phosocephalidae 8.33 0.75 4.19 9.57 52.93 Magelona dakini 2.75 14.00 3.61 8.25 61.19 GC Species/Taxa Average Abundance Average Abundance Average Abundance Average Abundance Contribution Contribution get 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Apr-0 = 43.	Nucula hartvigiana	73.92	37.92	6.85	15.65	43.37
Magelona dakini 2.75 14.00 3.61 8.25 61.19 Capitellidae (H. filiformis) 8.58 9.08 3.07 7.00 68.19 GC Species/Taxa Average Abundance Date 1 Average Abundance Date 2 Average Abundance Date 2 Contribution % Contribution % Magelona dakini 0.11.3 8.58 9.08 3.07 7.00 68.19 Magelona dakini 0.11.3 8.317 4.86 18.40 18.4 Paphies australis 18.93 1.08 2.90 10.99 46.92 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Paphies australis 18.93 10.07 1.83 2.19 8.28 55.2 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Paphies australis 18.93 10.00 4.57 13.45 27.95 Mereidae 3.93 17.17 6.75 3.83 11.28 52.36 Outoreff	H & KA 11 & Iarity	Phoxocephalidae	8.33	0.75	4.19	9.57	52.93
Capitellidae (H. tilitormis) 8.58 9.08 3.07 7.00 68.19 GC Species/Taxa Average Abundance Date 1 Average Date 2 Average Date 2 Contribution % Contribution % GC Aonides oxycephala 101.13 83.17 4.86 18.40 18.4 Paphies australis 18.93 1.06 2.90 10.99 46.92 Arthritice bifurce 1.07 1.83 2.19 8.28 65.2 Austrovenus stutchburyi 6.80 6.633 11.50 14.50 Paphies australis 18.93 10.00 4.57 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Nereidae 1.08 17.17 6.72 18.64 18.64 Austrovenus stutchburyi 0.82 5.05 14.02 32.66 Colurostylis lemurum 1.17 6.72 18.64 18.64	Oct-C lissim	Magelona dakini	2.75	14.00	3.61	8.25	61.19
GC Species/Taxa Average Abundance Date 1 Average Dissimilarity Average Dissimilarity Vereage Dissimilarity Curn. Contribution % 0000 Anicles oxycephala 101.13 83.17 4.86 18.40 18.40 9000 Anicles oxycephala 18.93 12.00 4.63 17.53 35.93 9000 Arthritica bifurca 1.07 1.83 2.19 8.28 55.2 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Anicles oxycephala 101.13 85.92 4.93 14.50 14.50 Paphies australis 18.93 10.00 4.67 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Anorides oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis l	0	Capitellidae (H. filiformis)	8.58	9.08	3.07	7.00	68.19
Aonides oxycephala 101.13 83.17 4.86 18.40 18.4 Paphies australis 18.93 12.00 4.63 17.53 35.93 Nereidae 3.93 1.06 2.90 10.99 46.92 Arthritica bifurca 1.07 1.83 2.19 8.28 65.2 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Paphies australis 18.93 10.00 4.57 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Annides oxycephala 83.17 85.92 5.55 14.02 32.66 Anides oxycephala 83.17 85.92 5.55 14.02 32.66 Anides oxycephala 83.17 85.92 5.55 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.23 53.87 Authitica bifurca	GC	Species/Taxa	Average Abundance Date 1	Average Abundance Date 2	Average Dissimilarity	Contribution %	Cum. Contribution %
Paphies australis 18.93 12.00 4.63 17.53 35.93 Vereidae 3.93 1.08 2.90 10.99 46.92 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Annides oxycephala 101.13 85.92 4.93 14.50 14.50 Paphies australis 18.93 10.00 4.57 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Nereidae 1.08 17.17 6.72 18.64 18.64 Aninics oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.23 53.87 Authritica bifurca 1.83 3.58 3.31 9.19 63.06 TP Species/Tax	39	Aonides oxycephala	101.13	83.17	4.86	18.40	18.4
Nereidae 3.93 1.08 2.90 10.99 46.92 Arthritica bifurca 1.07 1.83 2.19 8.28 55.2 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Aonides oxycephala 101.13 85.92 4.93 14.50 14.50 Paphies australis 18.93 10.00 4.57 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 6.75 3.83 11.28 52.36 Arthritica bifurca 1.08 17.17 6.72 18.64 18.64 Anides oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Austrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 View Wiewew	Oct-0 = 26.0	Paphies australis	18.93	12.00	4.63	17.53	35.93
Vergence Arithritica bilurca 1.07 1.83 2.19 8.28 55.2 Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Aonides oxycephala 101.13 85.92 4.93 14.50 14.50 Paphies australis 18.93 10.00 4.57 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Anthritica bifurca 1.08 17.17 6.75 3.83 11.28 52.36 Anthritica bifurca 1.08 17.17 6.72 18.64 18.64 Aonides oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Austrovenus stutchburyi 108.27 3.33 17.20 40.11 <td< td=""><td>1 & I &</td><td>Nereidae</td><td>3.93</td><td>1.08</td><td>2.90</td><td>10.99</td><td>46.92</td></td<>	1 & I &	Nereidae	3.93	1.08	2.90	10.99	46.92
Austrovenus stutchburyi 6.80 6.83 2.18 8.24 63.44 Paphies australis 101.13 85.92 4.93 14.50 14.50 Paphies australis 18.93 10.00 4.57 13.45 27.95 Paphies australis 10.07 6.75 3.83 11.28 52.36 Colurostylis lemurum 1.07 3.58 2.72 7.99 60.35 Paphies australis 12.00 10.00 3.96 10.02 3.69 10.23 53.87 Zolirostylis lemurum 1.17 6.75 3.69 10.23 53.87 Paphies australis 12.00 10.827 3.33 17.20 40.11 40.11 Nucula hartvigiana 208.13 91.08	Apr-0	Arthritica bifurca	1.07	1.83	2.19	8.28	55.2
Aonides oxycephala 101.13 85.92 4.93 14.50 14.50 Paphies australis 18.93 10.00 4.57 13.45 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 6.75 3.83 11.28 52.36 Arthritica bifurca 1.07 3.58 2.72 7.99 60.35 Paphies australis 12.00 10.00 3.96 10.98 43.64 Aonides oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Austrovenus stutchburyi 1.83 3.58 3.31 9.19 63.06 Paphies australis 29.93 23.33 6.25 14.57 83.22 Pathos australis 29.93 23.33 6.25 14.57 83.22 Paphies aust	0	Austrovenus stutchburyi	6.80	6.83	2.18	8.24	63.44
Paperines australis 10.83 10.00 4.37 13.43 27.95 Nereidae 3.93 17.17 4.46 13.13 41.08 Colurostylis lemurum 1.07 6.75 3.83 11.28 52.36 Arthritica bifurca 1.07 3.58 2.72 7.99 60.35 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Arthritica bifurca 1.83 3.58 3.31 9.19 63.06 TP Species/Taxa Average Abundance Date 1 Average Dusismilarity Contribution % Contribution % Verge Austrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 Nucula hartvigiana 208.13 91.08 12.24 28.54 68.65 Paphies australis 29.93 23.33 6.25 14.57 83.22 Patroscophium sp. 0.67 0.00 1.30 3.03	-02	Aonides oxycephala	101.13	85.92	4.93	14.50	14.50
Neterinate 3.53 17.17 4.46 15.13 41.06 Colurostylis lemurum 1.07 6.75 3.83 11.28 52.36 Arthritica bifurca 1.07 3.58 2.72 7.99 60.35 Nereidae Aconicles oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Arthritica bifurca 1.83 3.58 3.31 9.19 63.06 TP Species/Taxa Average Abundance Date 1 Average Date 2 Average Dissimilarity Contribution % Cum. Contribution % effecting the org Austrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 effecting the org Austrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 upd the org Austrovenus stutchburyi 108.27 2.33 10.00 1.30	y = 30	Papriles australis	10.93	10.00	4.57	13.45	27.95
Arthritica bifurca 1.07 3.58 2.72 7.99 60.35 Mereidae 1.07 3.58 2.72 7.99 60.35 Mereidae 1.08 17.17 6.72 18.64 18.64 Annicles oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Arthritica bifurca 1.83 3.58 3.31 9.19 63.06 TP Species/Taxa Average Abundance Date 1 Average Date 1 Average Date 1 Average Date 1 Average Date 2 Contribution % Contribution % Vergege Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Paphies australis 29.93 21.00	01 & G(3.93	6.75	4.40	11.09	41.00
Nereidae 1.07 0.03 2.72 1.35 00.03 Wereidae 1.08 17.17 6.72 18.64 18.64 Aonides oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Arthritica bifurca 1.83 3.58 3.31 9.19 63.06 TP Species/Taxa Average Abundance Date 1 Average Abundance Date 2 Average Dissimilarity Contribution % Contribution % Paphies australis 29.93 23.33 6.25 14.57 83.22 Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 208.13 71.67 14.25 31.22<	Apr-	Arthritica bifurca	1.07	3.58	3.83 2.72	7 00	52.30 60.35
Netretidae 1.08 17.17 6.72 16.64 16.64 Aonides oxycephala 83.17 85.92 5.05 14.02 32.66 Paphies australis 12.00 10.00 3.96 10.98 43.64 Colurostylis lemurum 1.17 6.75 3.69 10.23 53.87 Arthritica bifurca 1.83 3.58 3.31 9.19 63.06 TP Species/Taxa Average Abundance Date 1 Average Abundance Date 2 Average Dissimilarity Contribution % Curm. Contribution % Austrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 Nucula hartvigiana 208.13 91.08 12.24 28.54 68.65 Paphies australis 29.93 23.33 6.25 14.57 83.22 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 208.13 71.67		Neroideo	1.07	17.17	6.70	19.64	19.64
Aug Aug <td>-02</td> <td>Nereidae Aonides oxycenhala</td> <td>1.08</td> <td>17.17</td> <td>6.72 5.05</td> <td>18.64</td> <td>18.64</td>	-02	Nereidae Aonides oxycenhala	1.08	17.17	6.72 5.05	18.64	18.64
O Top O Top <th< td=""><td>ty ⊨ 3</td><td>Paphies australis</td><td>12.00</td><td>10.00</td><td>3.96</td><td>10.98</td><td>43.64</td></th<>	ty ⊨ 3	Paphies australis	12.00	10.00	3.96	10.98	43.64
8 · · · · · · · · · · · · · · · · · · ·	t-01 G	Colurostvlis lemurum	1.17	6.75	3.69	10.23	53.87
TP Species/Taxa Average Abundance Date 1 Average Abundance Date 2 Average Dissimilarity Date 2 Contribution % Cum. Contribution % Mustrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 Nucula hartvigiana 208.13 91.08 12.24 28.54 68.65 Paphies australis 29.93 23.33 6.25 14.57 83.22 Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 20.8.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67	OC diss	Arthritica bifurca	1.83	3.58	3.31	9.19	63.06
Abundance Date 1 Abundance Date 2 Dissimilarity Date 2 Mage Contribution % Austrovenus stutchburyi Nucula hartvigiana 108.27 3.33 17.20 40.11 40.11 Nucula hartvigiana 208.13 91.08 12.24 28.54 68.65 Paphies australis 29.93 23.33 6.25 14.57 83.22 Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Nucula hartvigiana 20.8.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paphies australis 29.33 21.00 1.092 32.24 32.24 Paphies australis 23.33 21.00 1.092 32.24 32.24	TP	Species/Taxa	Average	Average	Average	Contribution	Cum.
Austrovenus stutchburyi 108.27 3.33 17.20 40.11 40.11 Nucula hartvigiana 208.13 91.08 12.24 28.54 68.65 Paphies australis 29.93 23.33 6.25 14.57 83.22 Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies austra			Abundance Date 1	Abundance Date 2	Dissimilarity	%	Contribution %
Nucula nartvigiana 208.13 91.08 12.24 28.54 68.65 Paphies australis 29.93 23.33 6.25 14.57 83.22 Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Austrovenus	11 89	Austrovenus stutchburyi	108.27	3.33	17.20	40.11	40.11
Paphies australis 29.93 23.33 6.25 14.57 83.22 Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Commella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacm	Oct-0	Nucula hartvigiana	208.13	91.08	12.24	28.54	68.65
Paracorophium sp. 0.67 0.00 1.30 3.03 86.25 Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona da	TP 01 & illarity	Paphies australis	29.93	23.33	6.25	14.57	83.22
Notoacmea sp. 0.00 1.00 1.23 2.87 89.12 Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	Apr-(dissim	Paracorophium sp.	0.67	0.00	1.30	3.03	86.25
Austrovenus stutchburyi 108.27 2.25 19.59 42.94 42.94 Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	0	Notoacmea sp.	0.00	1.00	1.23	2.87	89.12
Nucula hartvigiana 208.13 71.67 14.25 31.22 74.16 Paphies australis 29.93 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	80.05	Austrovenus stutchburyi	108.27	2.25	19.59	42.94	42.94
Fragenies australis 29.95 21.00 6.64 14.55 88.71 Paracorophium sp. 0.67 0.00 1.39 3.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	o Apr-: y = 45	nucula nartviglana	208.13	/1.0/	14.25	31.22 14 FF	/4.1b 00 71
Autorophium sp. 0.07 0.00 1.39 5.04 91.76 Cominella adspersa 0.60 0.42 1.28 2.81 94.57 Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	-01 & nilariț	Fapilies austialis Paracorophium op	29.93	21.00	0.04	14.00	00.71
Nucula hartvigiana 91.08 71.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	Apr- dissir	Cominella adenersa	0.07	0.00	1.39	2.81	91.70
Nucuia nartvigiana 91.08 /1.67 10.92 32.24 32.24 Paphies australis 23.33 21.00 10.81 31.89 64.13 Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99			0.00	74.07	1.20	2.01	00.04
Austrovenus stutchburyi 3.33 2.25 4.06 11.98 76.11 Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	-02 3.88	ivucula nartviglana Panhies australis	91.08	71.67 21.00	10.92	32.24 31.89	32.24 64 13
Notoacmea sp. 1.00 0.00 1.85 5.46 81.58 Magelona dakini 0.33 0.33 1.83 5.41 86.99	P & Apr ty = 3	Austrovenus stutchhurvi	3.33	2 25	4 06	11.98	76 11
мagelona dakini 0.33 0.33 1.83 5.41 86.99	t-01 g imilari	Notoacmea sp.	1.00	0.00	1.85	5.46	81.58
	Oc diss	Magelona dakini	0.33	0.33	1.83	5.41	86.99

Table 6. (cont.)

MI	Species/Taxa	Average Abundance Date 1	Average Abundance Date 2	Average Dissimilarity	Contribution %	Cum. Contribution %
ul-01 31.43	Aonides oxycephala Austrovenus stutchburyi	48.67 4.87	51.17 2.08	5.36 3.58	17.04 11.37	17.04 28.42
lj s MI Lj s MI	Anthopleura aureoradiata	1.53	0.42	3.19	10.15	38.57
pr-01 simila	Capitellidae (H. filiformis)	0.00	1.25	2.92	9.29	47.86
A dis	Arthritica bifurca	1.27	0.58	2.63	8.36	56.22
_ @	Aonides oxycephala	48.67	50.92	4.75	16.46	16.46
Dct-01 = 28.6	Austrovenus stutchburyi	4.87	2.50	3.78	13.08	29.54
arity =	Arthritica bifurca	1.27	0.83	2.65	9.19	38.73
Apr-0 issimi	Notoacmea sp.	0.80	1.17	2.59	8.96	47.69
9	Anthopleura aureoradiata	1.53	0.83	2.33	8.06	55.76
1 76	Aonides oxycephala	51.17	50.92	4.98	16.18	16.18
= 30	Notoacmea sp.	0.50	1.17	2.68	8.71	24.89
01 & MI ilarity	Nereidae	2.08	1.08	2.67	8.69	33.58
Jul-0 dissim	Capitellidae (H. filiformis)	1.25	0.25	2.64	8.58	42.16
	Austrovenus stutchburyi	2.08	2.50	2.48	8.06	50.22
02	Aonides oxycephala	48.67	45.83	6.12	16.90	16.90
MI & Jan⊣ ity = 36	Paracoropnium sp.	0.00	3.00	5.11	14.11	31.01
01 & M nilarit	Austrovenus stutchburyi	4.87	1.33	4.30	7 07	42.00
Apr-l dissin	Anthonleura aureoradiata	1.27	0.83	2.69	7.97	58.28
		1.55	0.07	2.09	10.00	30.20
-02 3.78	Aonides oxycepnaia Paracoronhium sp	51.17	45.83	6.29 5.19	18.63	18.63 34.00
Al ty = 3	Capitellidae (H. filiformis)	1.25	1.17	2.77	8.19	42.19
-01 8 imilari	Austrovenus stutchburvi	2.08	1.33	2.52	7.47	49.67
Jul diss	Nereidae	2.08	0.83	2.33	6.89	56.56
	Aonides oxycenhala	50.92	45.83	5 76	16.46	16.46
n-02 35.00	Paracorophium sp.	0.00	3.00	5.09	14.55	31.01
MI &Ja ⊓ity =	Austrovenus stutchburyi	2.50	1.33	2.79	7.96	38.98
ct-01 simila	Notoacmea sp.	1.17	0.17	2.78	7.96	46.93
Q is	Arthritica bifurca	0.83	0.83	2.57	7.33	54.26
ω	Aonides oxycephala	48.67	42.67	4.83	15.47	15.47
pr-02 = 31.2	Austrovenus stutchburyi	4.87	3.50	3.93	12.56	28.03
MI & A arity =	Anthopleura aureoradiata	1.53	0.50	3.14	10.04	38.06
Apr-01 ssimil	Arthritica bifurca	1.27	0.75	2.85	9.10	47.17
- 1	Nereidae	1.00	1.50	2.49	7.98	55.14
a 8	Aonides oxycephala	51.17	42.67	4.80	16.38	16.38
Apr-02 = 29.3	Austrovenus stutchburyi	2.08	3.50	2.93	10.00	26.38
1 M larity	Capitellidae (H. filiformis)	1.25	0.58	2.72	9.26	35.64
Jul-0 lissim	Nereidae	2.08	1.50	2.61	8.89	44.53
0	Arthritica bifurca	0.58	0.75	2.31	7.86	52.39
21	Aonides oxycephala	50.92	42.67	4.50	14.43	14.43
Apr-(/ = 31	Notoacmea sp.	1.17	0.00	3.21	10.29	24.72
01 & MI nilarity	Austrovenus stutchburyi	2.50	3.50	3.18	10.20	34.92
Oct- dissin	Arthritico hifurco	1.08	1.50	2.64	8.45	43.37
		0.03	0.75	2.30	0.02	51.39
-02 3.73	Aonides oxycephala Paracorophium sp	45.83	42.67 0.02	5.45 5.17	16.16 15 32	16.16 31 40
1 Apr. 1y = 3:	r aracoropπium sp. Δμstrovenus stutchburvi	1 33	3 50	3.58	10.62	40 11
N -O2 & milarit	Capitellidae (H filiformis)	1 17	0.58	2.62	7 76	49.87
Jan dissi	Arthritica bifurca	0.83	0.75	2.44	7.25	57.11

Table 6. (cont.)

KB	Species/Taxa	Average Abundance Date 1	Average Abundance Date 2	Average Dissimilarity	Contribution %	Cum. Contribution %
ul-01 31.03	Austrovenus stutchburyi Capitellidae (H. filiformis)	39.67 6.53	19.00 13.50	4.83 3.47	15.55 11.18	15.55 26.72
KB arity =	Arthritica bifurca	6.80	2.50	3.32	10.69	37.42
Apr-01 ssimila	Aquilaspio aucklandica	6.20	3.67	2.48	7.99	45.41
dis H	Aonides oxycephala	1.93	1.83	2.37	7.62	53.03
1	Austrovenus stutchburyi	39.67	10.92	7.29	17.88	17.88
Oct-0 = 40.	Paracorophium sp.	0.07	7.25	5.92	14.52	32.40
H & H	Capitellidae (H. filiformis)	6.53	18.83	4.98	12.23	44.63
Apr-0 lissimi	Arthritica bifurca	6.80	1.25	4.18	10.26	54.89
°	Aquilaspio aucklandica	6.20	2.08	3.36	8.25	63.14
39	Paracorophium sp.	0.00	7.25	6.42	17.63	17.63
Oct-0 = 36	Austrovenus stutchburyi	19.00	10.92	3.38	9.29	26.92
H & KB	Capitellidae (H. filiformis)	13.50	18.83	2.93	8.06	34.97
Jul-0 dissim	Aonides oxycephala	1.83	0.33	2.82	7.76	42.73
	Aquilaspio aucklandica	3.67	2.08	2.81	1.12	50.45
02	Austrovenus stutchburyi	39.67	5.92	9.73	21.02	21.02
) Jan⊣ / = 46	Paracoropnium sp.	0.07	9.08	6.99	15.11	36.13
01 & KE nilarity		6.53	18.50	4.97	10.75	40.88
Apr-I dissin	Aquilaspio aucklandica	6.20	1.58	4.09	8.84	55.72
		0.80	1.67	3.82	8.25	63.97
-02 0.45	Paracorophium sp.	0.00	9.08	7.60 5.31	18.79	18.79
B Jan- y = 41	Capitellidae (H filiformis)	13.00	18 50	3.36	8 31	40.23
o1 & KI nilarit		3.67	1 58	3.28	8 11	48.35
Jul- dissi	Nucula hartvigiana	2.83	0.58	3 23	7.99	56.34
	Racaa naitiigiana Racaacranhium an	7.05	0.08	2.20	11 02	11.92
7-02 31.88	Capitellidae (H. filiformis)	18.83	18.50	3.51	11.00	22.83
(B & Jar ity ⊨ (Nucula hartvigiana	2.33	0.58	3.01	9.45	32.28
imilar	Austrovenus stutchburvi	10.92	5.92	2.85	8.93	41.22
diss diss	Aguilaspio aucklandica	2.08	1.58	2.74	8.58	49.80
	Austrovenus stutchburvi	39.67	14.58	5.86	16.84	16.84
or-02 34.77	Capitellidae (H. filiformis)	6.53	15.67	4.05	11.66	28.50
KB kity = A	Arthritica bifurca	6.80	2.58	3.47	9.97	38.47
pr-01 isimila	Paracorophium sp.	0.07	4.50	3.46	9.95	48.43
A dis	Aquilaspio aucklandica	6.20	1.92	3.02	8.70	57.12
	Paracorophium sp.	0.00	4.50	3.74	11.59	11.59
pr-02 = 32.2	Magelona dakini	0.67	3.00	3.04	9.41	21.00
KB & A arity:	Nucula hartvigiana	2.83	2.50	2.73	8.45	29.45
Jul-01 issimi	Austrovenus stutchburyi	19.00	14.58	2.57	7.97	37.42
q	Aquilaspio aucklandica	3.67	1.92	2.51	7.78	45.21
2 40	Paracorophium sp.	7.25	4.50	4.38	13.95	13.95
Apr-0 = 31.	Arthritica bifurca	1.25	2.58	2.76	8.79	22.74
KB 1 & ilarity	Magelona dakini	0.92	3.00	2.56	8.16	30.90
Oct-C dissim	Capitellidae (H. filiformis)	18.83	15.67	2.54	8.09	38.99
	ivucula hartvigiana	2.33	2.50	2.53	8.06	47.05
02 I.92	Paracorophium sp.	9.08	4.50	4.95	14.18	14.18
3 Apr⊹ / = 34	Austrovenus Stutchburyi	5.92	14.58	3.82	10.93	25.11
KE 02 & nilarity	Iviayeiuna uakimi Capitallidaa (U filiformia)	19 50	3.00 15 67	3.34 2.15	9.58	34.09 12 70
Jan- dissir	Nucula hartviciana	0.50	2 50	2 00	9.00 8 21	40.12 52 02
	i vaodia nai vigiana	0.00	2.00	2.30	0.01	52.00

There were no consistent patterns evident in the dissimilarities between sampling dates among the different monitoring sites. For example, there was little indication that assemblage composition at any of the sites was becoming increasingly dissimilar over time – with the possible exception of TP. The combination of indicator species/taxa that best accounted for the pattern for the full set of indicator species/taxa over the first year of the monitoring programme, and the indicator species/taxa which contributed most to the dissimilarities between sampling dates, differed among the monitoring sites.

3.3.2 Whaingaroa (Raglan) Harbour

The MDS ordination of the square-root transformed benthic macrofauna assemblage data at each of the five permanent monitoring sites over the period April 2001-April 2002 is presented in Figure 8.

The MDS plot shows that the five sites form separate clusters, indicating that the assemblages at each site were distinctly different from each other, and that these differences persisted over the monitored period. The assemblages were most similar at TU and X, and the assemblage at OB was least similar to those at the other sites. The low stress value (0.06) indicates that an acceptable representation of the similarities in assemblage composition was achieved.

The MDS plot also shows that at each site some change in assemblage composition occurred over time. The assemblages at TU and X showed relatively small changes through time during the first year of the monitoring programme, their positions in the MDS plot changing between sampling dates within a relatively small area of the plot. The largest changes occurred in the assemblages at OB, and to a lesser extent HB and WI. Within each of the site groups, the points representing the different times of sampling do not appear to exhibit any particularly clear or systematic patterns of change during the first year of the monitoring programme. Any patterns of change or trends are expected to become more evident as additional temporal data is added over longer time periods.

Figure 8: Non-metric multi-dimensional scaling (MDS) ordination of the squareroot transformed Whaingaroa Harbour benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date. Note that axis values are arbitrary and are not given. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.
The ANOSIM global test was used to indicate whether there were significant differences between any of the sampling dates at each site. Results from the ANOSIM global tests indicate that there were significant differences (P < 0.03) in assemblage composition at TU, HB, WI and OB over the sampling dates. There was no significant difference between the assemblages at X in October 2001 and April 2002 (note this site was not sampled in April 2001). Although assemblage compositions at TU, HB, WI and OB were significantly different, the global R values were relatively low (R < 0.347) indicating overlap in assemblage composition between sampling dates at all of these sites.

The significant differences at each site were explored further using ANOSIM pairwise comparison tests, with results presented in Table 7.

510		/II 5ai	npinig u								
Pairwise	τι	J	HE	3	Х	1	W	I	OB		
Comparison	R	Р	R	Р	R	Р	R	Р	R	Р	
Apr-01, Jul-01	-	-	-	-	-	-	0.207	**	0.503	**	
Apr-01, Oct-01	0.151	*	0.215	**	-	-	0.258	**	0.480	**	
Apr-01, Jan-02	-	-	-	-	-	-	0.434	**	0.383	**	
Apr-01, Apr-02	0.041	ns	0.203	**	-	-	0.337	**	0.352	**	
Jul-01, Oct-01	-	-	-	-	-	-	0.212	**	0.117	*	
Jul-01, Jan-02	-	-	-	-	-	-	0.494	**	0.421	**	
Jul-01, Apr-02	-	-	-	-	-	-	0.478	**	0.381	**	
Oct-01, Jan-02	-	-	-	-	-	-	0.238	**	0.345	**	
Oct-01, Apr-02	0.192	**	0.348	**	0.098	ns	0.364	**	0.305	**	
Jan-02, Apr-02	-	-	-	-	-	-	0.306	**	0.227	**	

Table 7: ANOSIM tests of the square-root transformed Whaingaroa Harbour benthic macrofauna assemblage data based on mean abundance values for each indicator species/taxa from all the samples at each site on each sampling date.

¹ Site X was only sampled in October 2001 and April 2002, so the *R* value presented is in affect the global *R* value.

** *P* < 0.01

* *P* < 0.05

ns *P* > 0.05

- no pairwise comparison as the site was not sampled on all possible dates

At WI and OB all five sampling dates (April 2001, July 2001, October 2001, January 2002 and April 2002) were significantly different from each other. At HB all three sampling dates (April 2001, October 2001, April 2002) were significantly different from each other. At TU the assemblages present in October 2001 were significantly difference among the assemblages in April 2001 and April 2002, but there was no significant difference among the assemblages in April 2001 and April 2002. For all sites, the pairwise R values were typically low (R < 0.503) indicating that although there were significant difference of overlap with some sampling dates being barely separable.

There is insufficient information available from just one year of monitoring to assess whether there are consistent patterns of change through time at each site, but the results suggest that there are likely to be seasonal, and potentially annual, differences among the benthic macrofauna assemblages at each of the sites in Whaingaroa (Raglan) Harbour. If these turn out to be real features of the intertidal benthic communities they will need to be considered in any understanding of longer-term patterns of community change.

The smallest combination of indicator species/taxa at each of the sites in Whaingaroa Harbour which best accounts for the pattern for the full set of indicator species/taxa over the first year of the monitoring programme are listed in Table 8. The five species/taxa which contributed most to determining the Bray-Curtis dissimilarities between all the sampling dates during the first year of the monitoring programme at each of the sites are listed in Table 9. Species/taxa are ordered by their average contribution to the total average dissimilarity between Sample Dates. The percentage

of the total dissimilarity that is contributed by each species is also given, and these percentages are then cumulated. Note that only the first five species are listed in each case, which for the Whaingaroa Harbour sites accounted for between 39-59% of the dissimilarity between sample dates.

Table 8: BVSTEP analysis to identify the smallest subset of indicator species/taxa whose similarity matrix across all the sample dates at each permanent monitoring site in Whaingaroa Harbour correlates with that for the full indicator species/taxa set, at $\rho \ge 0.95$.

Site	Correlation (p)	Species/Taxa
TU	0.960	Arthritica bifurca Austrovenus stutchburyi Macomona liliana Nucula hartvigiana Notoacmea sp. Anthopleura aureoradiata Aquilaspio aucklandica Aonides oxycephala Cossura sp. Capitellidae Nereidae
НВ	0.955	Phoxocephalidae Arthritica bifurca Austrovenus stutchburyi Macomona liliana Theora lubrica Aquilaspio aucklandica Polydorids Capitellidae Nereidae
x	0.960	Phoxocephalidae Arthritica bifurca Austrovenus stutchburyi Nucula hartvigiana Colurostylis lemurum Notoacmea sp. Aquilaspio aucklandica Glycera sp. Capitellidae Nereidae
WI	0.954	Phoxocephalidae Arthritica bifurca Austrovenus stutchburyi Macomona liliana Nucula hartvigiana Notoacmea sp. Aquilaspio aucklandica Aricidea sp. Polydorids Capitellidae Nereidae Paraonidae
OB	0.951	Phoxocephalidae Austrovenus stutchburyi Macomona liliana Theora lubrica Colurostylis lemurum Aquilaspio aucklandica Aricidea sp. Cossura sp. Goniada sp. Glycera sp. Capitellidae Nereidae Paraonidae

Table 9:SIMPER analysis breakdown of average dissimilarity between Sample
Dates at each of the permanent monitoring sites in Whaingaroa
Harbour into contributions from each indicator species/taxa.

TU	Species/Taxa	Average Abundance Date 1	Average Abundance Date 2	Average Dissimilarity	Contribution %	Cum. Contribution		
	Authritian hifuma	4 00	10.00	4.10	15.01	/0 1E 01		
F01 6.11	Aunnitica piturca Austrovenus stutchburvi	4.33	48 25	4.13	10.81	15.81 25.97		
ty = 2	Aquilasnio aucklandica	22 07	24 42	2.00	9 40	35.37		
-01 8 milari	Aonides oxycenhala	4,60	1.17	2.01	7,71	43.08		
Apr dissi	Notoacmea sp.	7.87	5.75	1.91	7.31	50.39		
	Nucula hartuigiana	10.07	07.17	2.02	11 47	11.47		
-02	Arthritica bifurca	4.33	5.50	2.93	10.61	22.07		
C Apr ty = 2	Aquilaspio aucklandica	22.07	20.50	2.58	10.07	32 15		
T 01 8 milari	Aonides oxycenhala	4 60	1 92	2.00	9 58	41 73		
Apr dissi	Notoacmea sp	7.87	11 58	2.43	8.57	50.30		
	Anthritian hifunan	10.00	F 50	2.13	10.30	10.30		
-02	Artnritica bilurca Nucula hartvigiana	16.00	5.50 27 17	3.57 2.84	13.79	13.79 24 79		
ity = 2	Austrovenus stutchburvi	48.25	36.92	2.62	10.12	34.90		
t-01 a imilar	Aquilaspio aucklandica	24.42	20.50	2.49	9.61	44.51		
Oc diss	Nereidae	7.83	2.08	2.42	9.37	53.89		
HB	Species/Taxa	Average	Average	Average	Contribution	Cum		
110	opeolos, raxa	Abundance Date 1	Abundance Date 2	Dissimilarity	%	Contribution %		
1 74	Austrovenus stutchburyi	5.87	15.25	6.59	17.01	17.01		
= 38.1	Arthritica bifurca	2.00	6.17	5.31	13.70	30.72		
HB arity:	Macomona liliana	3.47	0.83	4.39	11.32	42.04		
Apr-0 ssimi	Aquilaspio aucklandica	2.27	2.25	3.56	9.19	51.23		
9	Nereidae	3.40	2.50	3.14	8.12	59.34		
14	Arthritica bifurca	2.00	6.75	5.24	15.33	15.33		
Apr-0 = 34.	Nereidae	3.40	9.08	4.08	11.93	27.26		
HB 1 & ilarity	Austrovenus stutchburyi	5.87	6.50	3.62	10.59	37.85		
Apr-0 lissim	Macomona liliana	3.47	4.17	3.43	10.05	47.90		
Ð	Capitellidae (H. filiformis)	16.60	20.08	2.99	8.76	56.66		
19 S	Nereidae	2.50	9.08	5.16	13.52	13.52		
Apr-0 = 38.	Austrovenus stutchburyi	15.25	6.50	4.98	13.05	26.56		
HB 1 & ilarity	Arthritica bifurca	6.17	6.75	4.90	12.84	39.40		
Oct-0 lissim	Macomona liliana	0.83	4.17	4.34	11.37	50.77		
0	Capitellidae (H. filiformis)	13.83	20.08	3.21	8.40	59.17		
Х	Species/Taxa	Average Abundance Date 1	Average Abundance Date 2	Average Dissimilarity	Contribution %	Cum. Contribution %		
0 2	Nucula hartvigiana	21.83	24.25	3.06	11.81	11.81		
Apr-02 = 25.9	Notoacmea sp.	7.25	5.75	2.92	11.25	23.06		
X 18/4 arity =	Austrovenus stutchburyi	33.17	21.83	2.73	10.52	33.58		
Oct-0: ssimil	Aquilaspio aucklandica	12.58	15.42	2.35	9.06	42.64		
0 ii	Colurostylis lemurum	0.92	2.42	2.25	8.68	51.32		

Table 9. (cont.)

WI	Species/Taxa	Average Average Abundance Abundance E Date 1 Date 2		Average Dissimilarity	Contribution %	Cum. Contribution %
ul-01 30.67	Austrovenus stutchburyi Capitellidae (H. filiformis)	24.73 21.93	24.00 18.58	2.76 2.49	9.01 8.12	9.01 17.12
rity = J	Macomona liliana	17.87	12.75	2.33	7.60	24.73
pr-01 simila	Aquilaspio aucklandica	9.07	5.25	2.25	7.34	32.07
Adis	Nucula hartvigiana	4.67	3.00	2.20	7.16	39.23
0	Austrovenus stutchburyi	24.73	43.42	3.75	11.38	11.38
Dct-01 = 32.9	Nereidae	7.93	2.25	3.04	9.25	20.64
arity = €	Nucula hartvigiana	4.67	3.92	2.50	7.59	28.22
Apr-01 ssimil	Macomona liliana	17.87	10.42	2.50	7.58	35.81
d ip	Aquilaspio aucklandica	9.07	6.83	2.30	7.00	42.80
- 4	Austrovenus stutchburyi	24.00	43.42	3.77	12.81	12.81
Oct-01 = 29.4	Capitellidae (H. filiformis)	18.58	23.67	2.53	8.60	21.41
arity of	Nucula hartvigiana	3.00	3.92	2.42	8.22	29.63
Jul-0 issimi	Aquilaspio aucklandica	5.25	6.83	2.17	7.38	37.01
q	Nereidae	4.00	2.25	2.04	6.95	43.95
37	Nereidae	7.93	1.58	3.23	9.67	9.67
Jan-0 = 33.	Macomona liliana	17.87	7.67	2.93	8.77	18.44
1 & M llarity	Austrovenus stutchburyi	24.73	25.25	2.84	8.51	26.95
Apr-0 lissim	Capitellidae (H. filiformis)	21.93	35.25	2.74	8.21	35.16
0	Nucula hartvigiana	4.67	7.00	2.68	8.04	43.20
30.74	Capitellidae (H. filiformis) Nucula hartvigiana	18.58 3.00	35.25 7.00	3.82 2.67	12.43 8.68	12.43 21.11
k Jar ity≞	Austrovenus stutchburyi	24.00	25.25	2.64	8.59	29.71
il-01 similar	Notoacmea sp.	0.33	2.75	2.59	8.44	38.15
JL disc	Aricidea sp.	1.00	2.92	2.28	7.41	45.56
4	Austrovenus stutchburyi	43.42	25.25	3.55	11.91	11.91
an-02 29.8	Nucula hartvigiana	3.92	7.00	2.96	9.94	21.84
arity = VI	Capitellidae (H. filiformis)	23.67	35.25	2.54	8.52	30.37
oct-01 ssimila	Notoacmea sp.	1.33	2.75	2.23	7.49	37.85
명형	Aquilaspio aucklandica	6.83	6.75	2.06	6.91	44.76
4	Nucula hartvigiana	4.67	16.83	4.18	11.90	11.90
Apr-02 = 35.1	Notoacmea sp.	1.27	8.67	4.01	11.42	23.31
arity	Arthritica bifurca	1.93	5.92	3.62	10.30	33.61
Apr-0 ssimi	Austrovenus stutchburyi	24.73	32.42	3.10	8.82	42.43
<u> </u>	Macomona liliana	17.87	8.08	2.77	7.90	50.33
9	Notoacmea sp.	0.33	8.67	4.48	13.14	13.14
Apr-0 = 34.	Nucula hartvigiana	3.00	16.83	4.44	13.00	26.14
1 & I llarity	Arthritica bifurca	0.50	5.92	3.87	11.33	37.47
Jul-0 lissim	Capitellidae (H. filiformis)	18.58	18.00	2.91	8.54	46.02
0	Austrovenus stutchburyi	24.00	32.42	2.88	8.44	54.46
92	Nucula hartvigiana	3.92	16.83	4.55	13.42	13.42
Apr-C = 33.	Notoacmea sp.	1.33	8.67	3.83	11.30	24.72
01 & VI ilarity	Arthritica bifurca	0.83	5.92	3.01	8.86	33.58
Oct-C dissim	Austrovenus stutchburyi	43.42	32.42	2.89	8.53	42.11
	Capitellidae (H. filiformis)	23.67	18.00	2.56	7.55	49.66
02 .45	Nucula hartvigiana	7.00	16.83	4.01	12.76	12.76
 Apr-(/ = 31	Capitellidae (H. filiformis)	35.25	18.00	3.75	11.91	24.67
WI 02 & VIIarity	Ivotoacmea sp.	2.75	8.6/	3.18	10.10	34.76
Jan- dissin		1.50	5.92 20.40	3.11	9.69	44.00
	Austrovenus stutchburyl	20.20	32.42	2.90	9.21	00.00

Table 9. (cont.)

OB	Species/Taxa	Average Average Abundance Abundanc Date 1 Date 2		Average Dissimilarity	Contribution %	Cum. Contribution %
II-01 44.99	Capitellidae (H. filiformis) Cossura sp.	11.27 25.67	3.92 20.33	5.57 4.86	12.37 10.81	12.37 23.18
B B s J∟ = J =	Euchone sp.	3.33	0.08	4.48	9.95	33.13
pr-01 simila	Aquilaspio aucklandica	4.27	1.08	4.22	9.39	42.52
disi	Aricidea sp.	4.20	0.67	4.10	9.11	51.63
œ	Cossura sp.	25.67	22.58	4.37	11.42	11.42
Dct-01 = 38.2	Euchone sp.	3.33	0.17	3.69	9.64	21.05
arity =	Aricidea sp.	4.20	1.17	3.14	8.21	29.26
Apr-0	Aquilaspio aucklandica	4.27	1.33	2.98	7.79	37.05
. 9	Paraonidae	2.73	0.08	2.98	7.79	44.84
10 .61	Cossura sp.	20.33	22.58	7.06	16.20	16.20
0ct-0 / = 43	Capitellidae (H. filiformis)	3.92	8.50	5.51	12.63	28.83
01 & nilarity	Austrovenus stutchburyi	0.42	2.42	3.34	7.65	36.47
Jul- dissir		2.08	1.00	3.06	7.03	43.50
		1.08	1.33	2.90	0.04	0.00
4.14	Cossura sp. Macomona liliana	25.67	25.83	3.10 2.99	9.09 8.77	9.09 17.86
B & Jan ty = 3	Fuchone sp.	3.33	1.08	2.81	8.23	26.09
r-01 2 imilari	Phoxocephalidae	2.47	5.08	2.58	7.55	33.64
Ap diss	Aricidea sp.	4.20	2.75	2.45	7.19	40.83
	Capitellidae (H. filiformis)	3.92	12.75	6.19	13.01	13.01
tn-02 47.5⁄	Cossura sp.	20.33	25.83	5.56	11.69	24.71
OB & Ja ªrity =	Macomona liliana	0.25	3.25	4.19	8.81	33.52
lul-01 ssimila	Aricidea sp.	0.67	2.75	3.62	7.61	41.13
L iji	Theora lubrica	0.00	1.83	3.21	6.75	47.87
30 2	Cossura sp.	22.58	25.83	4.95	12.61	12.61
Jan-0 = 39.	Macomona liliana	0.92	3.25	2.89	7.35	19.96
0B 01 & ilarity	Theora lubrica	0.08	1.83	2.70	6.86	26.82
Oct-C dissim	Aricidea sp.	1.17	2.75	2.53	6.45	33.27
	Austrovenus stutchburyi	2.42	0.17	2.52	6.41	39.68
02	Euchone sp.	3.33	0.25	3.36	9.72	9.72
у = 3. У = 3.	Aricidea sp.	25.07	20.75	3.20 2.75	9.25	10.90
-01 & OI	Theora lubrica	4.20	2 92	2.75	7.95	20.95
Apr dissi	Paraonidae	2.73	0.42	2.52	7.29	42.17
	Canitellidae (H filiformis)	3.92	12.33	6.25	13.24	13.24
r-02 47.21	Cossura sp.	20.33	28.75	5.86	12.42	25.67
8 Ap 8 Ap	Theora lubrica	0.00	2.92	4.36	9.24	34.91
ul-01 simila	Aquilaspio aucklandica	1.08	2.50	3.56	7.53	42.44
J, dis	Phoxocephalidae	2.92	1.08	3.27	6.93	49.37
<u>ى</u>	Cossura sp.	22.58	28.75	5.30	13.34	13.34
Apr-02 = 39.7	Phoxocephalidae	4.50	1.08	3.68	9.26	22.60
0B 1 & / larity =	Theora lubrica	0.08	2.92	3.64	9.15	31.75
Oct-0	Austrovenus stutchburyi	2.42	0.17	2.63	6.61	38.36
م _	Capitellidae (H. filiformis)	8.50	12.33	2.62	6.58	44.94
16	Cossura sp.	25.83	28.75	3.88	10.74	10.74
Apr-C 1 = 36.	Phoxocephalidae	5.08	1.08	3.39	9.36	20.10
OB 02 & Jilarity	Macomona IIIana	3.25	1.25	2.75	7.61 6.57	27.72
Jan- dissin	Theora lubrica	1 92	12.33 2.02	2.38 2.27	0.37	34.29 10 92
	incola lublica	1.00	2.32	2.07	0.00	40.00

The combination of indicator species/taxa that best accounted for the pattern for the full set of indicator species/taxa over the first year of the monitoring programme, and the indicator species/taxa which contributed most to the dissimilarities between sampling dates, differed among the monitoring sites. At HB 9 species from the suite of 26 indicator species accounted for nearly all of the full pattern ($\rho = 0.955$) (Table 8). Four species/taxa (the bivalves Austrovenus stutchburyi, Arthritica bifurca and Macomona liliana; and nereid polychaetes) were consistently important in contributing to the differences in assemblage composition among sampling dates at this site (Table 9). At TU 11 species/taxa accounted for nearly all of the full pattern ($\rho = 0.960$) (Table 8). Two species (the polychaete Aquilaspio aucklandica and the bivalve A. bifurca) were consistently important in contributing to the differences among sampling dates at TU (Table 9). At X 10 species/taxa accounted for nearly all of the full pattern ($\rho = 0.960$) (Table 8). At WI 12 species/taxa from the suite of 26 indicator species accounted for nearly all of the full pattern ($\rho = 0.954$) (Table 8). Two species (the bivalves A. stutchburyi and Nucula hartvigiana) were consistently important in contributing to the differences in assemblage composition among sampling dates at WI (Table 9). At OB 13 species/taxa accounted for nearly all of the full pattern ($\rho = 0.951$) (Table 8). One species (Cossura sp.) was consistently important in contributing to the differences in assemblage composition among sampling dates at OB.

The differences between the sampling dates were most pronounced at OB (also reflected in the MDS ordination in Figure 8), where the highest average dissimilarity was recorded (i.e., assemblage composition was least similar between sampling dates). Bray-Curtis dissimilarities between sampling dates were smallest (also reflected in the MDS ordination in Figure 8) at TU and X (i.e., assemblage composition was most similar between sampling dates). There were no consistent patterns evident in the dissimilarities between sampling dates among the different monitoring sites.

3.4 Sediment Characteristics

3.4.1 Surficial Sediment Grain-Size and Shell-hash

3.4.1.1 Southern Firth of Thames

There was a decrease in the median grain-size at KA, MI, GC and KB over the first year of the monitoring programme (Figure 9(a)). The greatest decrease occurred at GC, which was also the site where the largest median grain-size was recorded. The sediment at GC was the most sorted of the southern Firth of Thames sites, and contained predominantly medium and coarse sand and gravel, with a very low percentage of clay and silt (Gibberd and Carter, in prep.). The proportion of mud (< 63 µm) in the sediment between April 2001 and April 2002 was consistently low (< 2.2%, 1.2%, 1.8% and 0.8%, respectively) at MI, GC, KB and TP (Figure 9(b)). The MI sediment was dominated by fine and very fine sand, with moderate (usually 10-30%) medium and coarse sand content (Gibberd and Carter, in prep.). The sediment at KB and TP had similar grain-size distributions and both sites were poorly sorted, with medium sand accounting consistently for 15-20% of the sediment by volume (Gibberd and Carter, in prep.). The KA site was consistently the muddlest site, but was poorly sorted and highly variable (Gibberd and Carter, in prep.). There was an increase in the proportion of mud in the sediment at KA between April 2001 $(1.3\% \pm 0.2)^{10}$ and October 2001 (17.9% \pm 2.9), with the proportion decreasing again in April 2002 (3.0% \pm 0.3) (Figure 9(b)). Note that the changes recorded at KA may reflect the shoreward relocation in October 2001 of the permanent monitoring plot on the intertidal flat at this site. Gravels present at KA (23.2% ± 6.5) and MI (15.6% ± 4.8) in April 2001 had almost completely disappeared from subsequent sediment samples (Gibberd and Carter, in prep.).

The dry weight of shell-hash in the sediment remained reasonably consistent at MI and KB between April 2001 and April 2002 (Figure 9(c)). There were increases in the dry

¹⁰ All values are standard errors unless noted otherwise.

weight of shell-hash at GC and TP (Figure 9(c)). The most marked increase was recorded at GC, which was also the site with the greatest dry weight of shell-hash. Mean dry weight of shell-hash increased from 889.3 (\pm 64.7) g.core⁻¹ ¹¹ at GC in April 2001 to 1338.5 (\pm 133.3) g.core⁻¹ in April 2002. There was a decrease in dry weight of shell-hash at KA (Figure 9(c)).

The data are included in full in Appendix 3.

3.4.1.2 Whaingaroa (Raglan) Harbour

The sediment at all five sites in Whaingaroa (Raglan) Harbour was very poorly sorted with polymodal particle size distributions (Gibberd and Carter, in prep.). In April 2001, the sediment at all five monitoring sites showed similar particle size distributions, being predominantly sandy with a high percentage of coarse sand and gravel (Gibberd and Carter, in prep.). There was a decrease in the median grain-size at HB, WI, TU and OB between April 2001 and October 2001 reflecting lower gravel and coarse sand content, and an increase over the period to April 2002 at HB, WI and TU (Figure 10(a)). There was an increase in the proportion of mud (< 63 μ m) in the sediment between April 2001 and April 2002 at HB, which was the site with the highest proportion of mud in the sediment (Figure 10(b)). The proportion of mud at HB increased from a mean of 6.6% (\pm 1.7) in April 2001 to 15.8% (\pm 4.9) in April 2002. This coincided with a gradual decrease in the content of coarse sand and gravel (Gibberd and Carter, in prep.). At TU, WI and OB there was an increase in the proportion of mud over the winter-spring period (July and October), with proportions decreasing over the following summerautumn period (January and April) (Figure 10(b)). Overall there were no consistent increases or decreases in the proportion of mud in the sediments at these sites over the first year of the monitoring programme. Sediments at TU were dominated by very fine sand and fine sand (Gibberd and Carter, in prep.). The gravel content at TU was quite variable, ranging between 21.5% (± 5.5) in April 2001 and 1.4% (± 1.2) in October 2001 (Gibberd and Carter, in prep.). The composition of the sediment at WI varied during the study period but there was no apparent trend (Gibberd and Carter, in prep.). The sediment at OB was consistently dominated by fine and very fine sand, except for the first sampling time in April 2001, when a large gravel and coarse sand content was present (Gibberd and Carter, in prep.). The smallest change in the proportion of mud was recorded at X (Figure 10(b)).

The dry weight of shell-hash in the sediment remained reasonably consistent at each of the five sites between April 2001 and April 2002 (Figure 10(c)).

The data are included in full in Appendix 3.

3.4.2 Sediment Organic Matter Content

3.4.2.1 Southern Firth of Thames

There was an increase in the mean total organic carbon and total nitrogen content of surficial sediments at KA, the muddiest site, between April 2001 (total organic carbon: 0.31 (\pm 0.01) g.100 g⁻¹; total nitrogen: 0.06 (\pm 0.00) g.100 g⁻¹) and April 2002 (total organic carbon: 1.49 (\pm 0.62) g.100 g⁻¹; total nitrogen: 0.16 (\pm 0.01) g.100 g⁻¹) (Figure 9(d) and 3(e)). At the other four sites, while there was an indication of variability in the mean total nitrogen content of the sediments over the first year of the monitoring programme, there were no consistent increases or decreases evident (Figure 9(e)). The mean total organic carbon content was similarly reasonably consistent at MI, GC, KB and TP (Figure 9(d)).

The data are included in full in Appendix 4.

 $^{^{11}}$ Shell-hash dry weights are reported per 13 cm ø, 15 cm deep core.

3.4.2.2 Whaingaroa (Raglan) Harbour

The greatest mean total organic carbon $(0.79 (\pm 0.01) \text{ g}.100 \text{ g}^{-1}$ in October 2001) and total nitrogen $(0.11 (\pm 0.00) \text{ g}.100 \text{ g}^{-1}$ in April 2001 and $0.11 (\pm 0.00) \text{ g}.100 \text{ g}^{-1}$ in October 2001) content of surficial sediments were consistently recorded at HB, the muddiest site (Figure 10(d) and 4(e)). There were relatively small changes in the mean total organic carbon or total nitrogen content over the first year of the monitoring programme at this site. At the other four sites there was an indication of variability in the mean total nitrogen content of the sediments over the first year of the monitoring programme, with the highest contents generally recorded in winter-spring (July and October), and the lowest contents in summer-autumn (January and April) (Figure 10(e)). However, there were generally no consistent decreases or increases evident at these sites. The mean total organic carbon content of the sediments was reasonably consistent at TU, OB and X, but declined at WI (Figure 10(d)).

The data are included in full in Appendix 4.

3.4.3 Sediment Photosynthetic Pigment Concentration

3.4.3.1 Southern Firth of Thames

Mean chlorophyll-*a* concentration was reasonably consistent at KA and TP between April 2001 and October 2001 (the period for which data are available), but there was an indication of a decrease in mean chlorophyll-*a* concentration at GC and KB and an increase at MI over the same period (Figure 9(f)).

There was an increase in mean phaeophytin concentration at KA and GC between April 2001 and October 2001, a decrease over the same period at MI and TP, with reasonably consistent mean phaeophytin concentrations at KB (Figure 9(g)).

The data are included in full in Appendix 5.

3.4.3.2 Whaingaroa (Raglan) Harbour

Mean chlorophyll-*a* concentration was variable between April 2001 and October 2001 at WI and OB, with the greatest concentrations being recorded in July 2001 (Figure 10(f)). There was an indication of an increase in mean chlorophyll-*a* concentration at HB and a decrease at TU over April 2001 and October 2001 period (Figure 10(f)).

Mean phaeophytin concentration increased between April 2001 and July 2001 and subsequently declined again in October 2001at WI and OB, was reasonably consistent at TU and increased at HB (Figure 10(g)).

The data are included in full in Appendix 5.

Figure 9: Mean (± standard error) a) median grain-size, b) proportion of mud (< 63 μ m), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content, f) chlorophyll-*a* concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in the southern Firth of Thames between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.

Figure 10: Mean (\pm standard error) a) median grain-size, b) proportion of mud (< 63 µm), c) shell-hash dry weight, d) total organic carbon content, e) total nitrogen content, f) chlorophyll-*a* concentration and g) phaeophytin concentration of the sediment at the permanent monitoring sites in Whaingaroa Harbour between April 2001 and April 2002. Sampling dates: April-01 = 1, July-01 = 2, Oct-01 = 3, Jan-02 = 4, April-02 = 5.

3.5 Linking Assemblage Composition to Sediment Characteristics

The intent of the Regional Estuary Monitoring Programme is to document existing environmental conditions (e.g., sediment grain-size, organic matter content, plant photosynthetic pigments), how these change in space and time, and to link these changes with changes in the benthic macrofauna communities. Such an integrated monitoring programme is more responsive to detecting overall trends. However, it is important to note that the linking of patterns in the benthic macrofauna assemblages to those of the measured sediment characteristics does not necessarily mean they are the cause of or explain the full ecological pattern, but is more an indication as to what may be influencing the macrofauna assemblages. Causality can only be demonstrated by manipulative field or laboratory experiments, where the effects of a single factor on community structure is investigated whilst all other factors are held constant or controlled (Clarke and Warwick, 2001).

3.5.1 Southern Firth of Thames

The single sediment variable which best explained the patterns of macrofauna assemblage composition, was dry weight of shell-hash (Spearman rank correlation coefficient $\rho_s = 0.364$). This was the highest correlation obtained in the BIO-ENV analysis. The best 2-sediment variable combination was dry weight of shell-hash and the proportion of mud (< 63 µm) in the surficial sediments ($\rho_s = 0.335$). The best 3-sediment variable combination content ($\rho_s = 0.311$) or total nitrogen content ($\rho_s = 0.310$). If the BIO-ENV analysis is repeated to include only those sampling dates for which there is data for chlorophyll-*a* and phaeophytin concentration, the overall optimum correlation was for the 3-sediment variable combination of dry weight of shell-hash, chlorophyll-*a* and phaeophytin concentration ($\rho_s = 0.734$).

3.5.2 Whaingaroa (Raglan) Harbour

The single sediment variable which best explained the patterns of assemblage composition, was dry weight of shell-hash (Spearman rank correlation coefficient $\rho_s = 0.689$). This was the highest correlation obtained in the BIO-ENV analysis. The best 2-sediment variable combination was dry weight of shell-hash and total organic carbon content of the surficial sediments ($\rho_s = 0.661$). The best 3-sediment variable combination retained dry weight of shell-hash and total organic carbon content and added in the proportion of mud (< 63 µm) ($\rho_s = 0.615$). Note that there was little difference in the results if the BIO-ENV analysis is repeated to include only those sampling dates for which there is data for chlorophyll-*a* and phaeophytin concentration. The highest correlation was for dry weight of shell-hash and total organic carbon content ($\rho_s = 0.630$), and the next best correlation was achieved for the 4-sediment variable combination which retained dry weight of shell-hash and total organic carbon content and added in the proportion of mud and median grain-size ($\rho_s = 0.535$).

4 **Discussion**

Since the time-frame covered by this report is only the first year of the monitoring programme, detailed discussion and identification of trends or patterns of change in the monitored benthic macrofauna communities through time is premature. At present we are building up a picture of short-term changes (their nature, size and frequency) that affect these communities. In the future, information on these changes will enable long-term trends to be identified. It is in such trends that any impacts of long-term changes in the estuaries or their catchments are likely to become apparent.

In association with monitoring for long-term changes, in the future it is proposed that event-driven monitoring of sites will be incorporated into the current Regional Estuary Monitoring Programme's sampling regime. An example could be intensive short-term monitoring of benthic communities and sediment characteristics over a period of significant rainfall, which can drive estuarine ecosystems through direct regulation of salinity, vertical stratification, nutrient input and sedimentation rates. Furthermore, sediment and nutrient runoff information from independent event-driven catchment studies could also be integrated into the analysis, which would provide an important link between catchment processes and their impact on estuarine ecosystems. This will further increase our ability to identify, measure and link changes detected as part of the long-term monitoring programme with the causes of these changes, as well as enabling the effects of particular events to be distinguished from existing variation or trends.

5 **Recommendations**

1. The Regional Estuary Monitoring Programme should continue as outlined in Turner (2001). Monitoring should continue to be undertaken at two of the sites in each estuary at 3-monthly intervals (January, April, July and October) and at the three remaining sites at 6-monthly intervals (April and October) (Tables 10 and 11).

Table 10:Recommended 3- and 6-monthly sampling schedule at the five
permanent monitoring sites in the southern Firth of Thames.

	KA	MI	GC	KB	TP
2001	Apr/Oct	Apr/Jly/Oct	Apr/Oct	Apr/Jly/Oct	Apr/Oct
2002	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct
2003	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct
2004	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct
2005	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct

Table 11: Recommended 3- and 6-monthly sampling schedule at the five permanent monitoring sites in Whaingaroa Harbour.

	KA	MI	GC	KB	TP
2001	Apr/Oct	Apr/Jly/Oct	Apr/Oct	Apr/Jly/Oct	Apr/Oct
2002	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct
2003	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct
2004	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct
2005	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct	Jan/Apr/Jly/Oct	Apr/Oct

A review of the monitoring programme should be undertaken after 3-5 years to assess whether any changes can be implemented in terms of frequency of sampling or the number of sites sampled, and/or the number of samples collected on each sampling occasion.

Continued monitoring will provide a measure of the patterns of temporal change in the sediment characteristics and the associated benthic communities. From these time-series it will be possible to distinguish trends from short-term variability, and thereby identify long-term changes in the sediment and benthic communities.

- 2. The Regional Estuary Monitoring Programme has implemented formal quality control and assessment protocols for the sorting, identification and enumeration of benthic core samples (Turner et al., 2002; see Appendix 6), and these need to continue to be rigorously implemented.
- 3. Rather than focusing on monitoring one or two species ("indicator species") which are presumed to be representative of the whole community in terms of their response to environmental changes, the Regional Estuary Monitoring Programme monitors a suite of 26 selected benthic macrofauna species and taxa. While monitoring a suite of species is more costly than monitoring only one or two indicator species, because it requires the identification and counting of more species of macrofauna, changes in a number of species present at the same site are more indicative of potential environmental stress than changes in a single

species. By including a suite of species, the monitoring programme will be more likely to detect unexpected effects and will also provide a larger-scale picture of ecological changes.

NIWA were commissioned to recommend a suite of species to be monitored (Hewitt et al., 2001). The species were chosen to represent a range of different taxonomic groups (including, bivalve and gastropod molluscs, polychaete worms, and several types of crustaceans) and different life-styles (predators, filter-feeders and deposit-feeders). The following 26 species and taxa were recommended as an appropriate suite of indicator species for the southern Firth of Thames and Whaingaroa Harbour (Table 12):

Order	Таха	Order	Таха
Amphipoda	Paracorophium sp.	Polychaeta	<i>Aglaophamus</i> sp.
	Phoxocephalidae		Aquilaspio aucklandica
Bivalvia	Arthritica bifurca		Aonides oxycephala
	Austrovenus stutchburyi		<i>Aricidea</i> sp.
	Macomona liliana		Boccardia ?syrtis
	Nucula hartvigiana		<i>Cossura</i> sp.
	Paphies australis		Euchone sp.
	Theora lubrica		<i>Glycera</i> sp.
Cnidaria	Anthopleura aureoradiata		<i>Goniada</i> sp.
Cumacea	Colurostylis lemurum		Heteromastus filiformis
Gastropoda	Cominella adspersa		Magelona dakini
	Notoacmea sp.		Nereidae
			Orbinia papillosa
			Paraonidae

Table 12:	List of 26 recommended indicator species/taxa to be monitored in
	the southern Firth of Thames and Whaingaroa Harbour.

This suite of species and taxa should continue to be monitored. With the principal exception of the introduced bivalve (*Musculista senhousi*) at GC in April 2002, the majority of species/taxa recorded at each of the monitoring sites are included in this suite of monitored species with non-indicator species making relatively small contributions numerically to the macrofauna communities (see Figures 5 and 6).

Following discussions with scientists at the University of Auckland and NIWA, the following changes have been implemented:

- 1) Heteromastus filiformis and other capitellids recorded as "Capitellidae".
- 2) Boccardia ?syrtis, Polydora and Pseudopolydora recorded as "Pseudopolydora complex".

The distinguishing characteristic for *Heteromastus filiformis*, as opposed to other capitellids, is that only capillary setae are present on the first 5 setigers and thereafter only hooded hooks are present for the rest of the body (Hewitt et al. 2001). Capitellids are generally small, with few highly visible distinguishing characteristics, and the generic identification of capitellids is accepted as being difficult (e.g., Fauchald 1977). Some difficulties have been encountered with identifying capitellids (in particular smaller individuals) as Heteromastus filiformis as distinct from other species - even using high-power microscopy to examine each specimen - and it is likely that the greater number of specimens have been identified as "Heteromastus filiformis". In recognition that there is likely to be variability between staff (at different organisations) in terms of ability to identify capitellids to species-level and that there is a risk of mis-identification; that only a sub-set of all samples are subject to quality-control checks; as well as the need to balance the cost of the programme (additional costs are likely to be incurred if each individual has to be examined under a high-power microscope for identification) and the level of information provided, it is recommended that a more conservative approach be adopted and all the capitellids in the samples should be classified as Capitellidae. It is acknowledged that by adopting this approach, there will be a loss of some biodiversity and species-specific information (for example, not all species of capitellids exhibit the same response to organic enrichment). Nevertheless, the intent of the monitoring programme is to provide a general indication of ecological quality from a suite of monitored species, rather than seeking to target species that are precise indicators of specific forms of impact (for example, capitellids are generally abundant under conditions of organic enrichment, but the species may vary, and conversely, the presence of capitellids is not necessarily an indication of enrichment). It should also be noted that, from the detailed examinations of the specimens that have been undertaken to date, the majority of capitellids in the samples are *Heteromastus filiformis* in any case, with other species occurring occasionally.

Boccardia ?*syrtis* belongs to a sub-family of the spionids, the polydorids, which are characterised by a distinctive 5th setiger consisting of modified setae (Hewitt et al. 2001). The genus *Boccardia* displays two types of stout spines: one type has a bulbous, bristle-top end, and the other is a simple falcate spine (Hewitt et al. 2001). Some difficulties have been encountered with identifying polydorids (in particular smaller individuals where it is difficult to verify spine morphology) as *Boccardia* ?*syrtis* as distinct from other species of polydorids (e.g., *Polydora* and *Pseudopolydora*) – even using high-power microscopy to examine each specimen – and it is likely that the greater number of specimens have been identified as *"Boccardia ?syrtis"*. For similar reasons and caveats outlined for *Heteromastus filiformis* (above) it is recommended that all the polydorids in the samples should be classified in the *"Pseudopolydora* complex".

Examination of the non-monitored species/taxa at sites in both the southern Firth of Thames and Whaingaroa Harbour has identified some species/taxonomic groups which occurred in high numbers. At this stage it is not proposed that changes to the list of monitored species should be implemented. However, it is important that the non-monitored species should continue to be identified (at least to taxonomic group) and counted to provide a broad description of the changes in macrofauna communities occurring at each site. This will provide a fuller description of the macrofauna communities and be useful in identifying potential incursions of introduced species such as *Musculista sentousi*.

6 Literature Cited

Clarke, K.R. and Gorley, R.N. 2001: PRIMER v5: User Manual/Tutorial. PRIMER-E Ltd.

Clarke, K.R. and Warwick, R.M. 2001: Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. PRIMER-E Ltd.

Fauchald, K. 1977: The Polychaete Worms. Definitions and Keys to the Orders, Families and Genera. *Natural History Museum of Los Angeles County, Science Series* 28, 1-190.

Gibberd, B. and Carter, N.R: Regional Estuary Monitoring Programme: Sediment Monitoring - April 2001 to April 2003. Environment Waikato Internal Series (In Preparation).

Hewitt, J.E.; Funnell, G.A.; Cummings, V.J. and Hatton, S. 2001: *Guide to Macrobenthic Invertebrate Taxa Monitored by Environment Waikato*. NIWA Client Report EVW01225/2.

Morrisey, D.J.; Burt, K.; Funnell, G.A.; Hume, T.M.; Kemp, C.L.S.; Ovenden, R.; Smith, R.K. and Swales, A. 1999: *Ecological Monitoring for Potential Effects of Forestry Activity on the Intertidal Habitats of Whangapoua Harbour. Annual Report 1998-1999 and Summary of Results 1993-1999*. NIWA Client Report ERN90202/1.

Thrush, S.F.; Pridmore, R.D.; Hewitt, J.E. and Roper, D.S. 1988: *Design of an Ecological Monitoring Programme for the Manukau Harbour*. Water Quality Consultancy Report No. 7099.

Turner, S. 2000: *Proposed Coastal Ecological Monitoring Programme for Environment Waikato*. Environment Waikato Internal Series 2000/08.

Turner, S. 2001: *Monitoring the Region's Estuaries – Intertidal Sand-Flat Benthic Communities*. Environment Waikato Internal Series 2000/11.

Turner, S.; Gibberd, B. and Crozier, J. 2002: *Regional Estuary Monitoring Programme* – *Pilot Study*. Environment Waikato Internal Series 2002/02.

Appendix 1 - Southern Firth of Thames species/taxonomic group abundances

KA April 2001

				COR	E NUN	BER													
INDICAT	OR SPECIES		1	2	3	4	5	6	7	10	12	14	15	16	17	18	19	TOTAL	MEAN
AMPHIP	ODS																		
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
BIVALV	ES	SIZE																	
BAB	Arthritica bifurca	<2	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0.1
		>2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
		l otal	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	3	0.2
BAS	Austrovenus stutchburyi	<5	3	3	1	1	1	0	0	1	4	2	2	1	0	0	0	19	1.3
		>5 Total	0	0	1	1	1	0	0	1	0	0	0	1	0	0	0	10	0.0
DM	Magamana liliana	TOLAI	3	3	0	0	0	0	0	0	4	2	2	0	0	0	0	19	1.3
DIVIL	Macamona illiana	5-15	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	2	0.1
		>15	0	0	1	0	0	0	0	0	1	1	0	0	0	1	0	4	0.2
		Total	1	1	1	0	1	0	0	0	3	1	0	0	0	1	0	9	0.6
BNH	Nucula hartvigiana	<2	2	1	1	4	2	3	0	0	1	1	8	4	12	1	0	40	2.7
	0	>2	1	11	2	1	2	3	4	0	5	1	0	8	3	2	2	45	3.0
		Total	3	12	3	5	4	6	4	0	6	2	8	12	15	3	2	85	5.7
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
BTHL	Theora lubrica	<5	6	0	4	10	9	8	11	0	5	0	0	5	7	13	4	82	5.5
		>5	1	13	2	7	11	2	8	0	2	14	14	2	7	3	7	93	6.2
		Total	7	13	6	17	20	10	19	0	7	14	14	7	14	16	11	175	11.7
CUMAC	EANS																		
CCL	Colurostylis lemurum		0	0	0	0	0	0	2	0	1	0	0	0	0	0	0	3	0.2
GASTRO	JPODS				_	_		_				_		_	_	_			
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GINHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
OTHER			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
POLICI	Aguiloania ayaklandiga		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
PAGI	Aquilaspio auckiariuica Adlaonbamus sp		3	3	2	0	0	1	1	0	1	0	0	0	1	0	0	12	0.0
PAO	Agraophamus sp. Aonides oxycenhala		0	1	0	0	0	0	1	0	1	0	0	0	0	0	1	4	0.3
PAR	Aricidea sp.		0	1	3	3	6	6	4	õ	4	2	4	2	5	6	8	54	3.6
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	0	0	0	0	0	2	0	0	1	0	0	3	0.2
PHF	Capitellidae (Heteromastus fi	liformis)	1	0	0	3	0	1	3	0	2	0	1	0	2	4	2	19	1.3
PMD	Magelona dakini		1	3	0	0	1	2	1	1	0	1	0	3	1	0	1	15	1.0
PNIC	Nereidae		1	3	1	0	1	2	1	0	2	2	4	1	3	4	4	29	1.9
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
	Amphinedo		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
CCRAB	Crabe		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.0
CCLIM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	0	1	0	0	1	0	0	0	2	0	0	5	0.3
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0.1
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		0	0	1	2	0	1	0	0	2	0	0	1	2	0	1	10	0.7
GOTH	Gastropods		0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	3	0.2
EFEZ	FEZ Fellaster zealandiae		1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	5	0.3
EHOL	HOL Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
POTH	Polychaetes		0	1	2	1	0	1	0		1	0	0	1	0	0	0	8	0.5
	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	r latworm Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	EDW <i>Edwardsia</i> THEB Misc Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			22	42	21	35	35	32	38	4	36	27	34	28	46	34	33	467	31.1

KA October 2001

NINCAR SPECIES NINCAR	CORE NUNBER																
AMENI POOS I <th< th=""><th>INDICAT</th><th>OR SPECIES</th><th></th><th>1</th><th>2</th><th>3</th><th>5</th><th>6</th><th>8</th><th>9</th><th>10</th><th>11</th><th>13</th><th>14</th><th>15</th><th>TOTAL</th><th>MEAN</th></th<>	INDICAT	OR SPECIES		1	2	3	5	6	8	9	10	11	13	14	15	TOTAL	MEAN
ACOR Concentricate N 0	AMPHIP	ODS															
Charlow and output SIZ I	ACOR	Corophiidae Bhovooanholidaa		0	6	0	0	0	0	0	1	0	0	0	0	7	0.6
BBB Arthribes International -2 0 0 0 1 1 2 1 1 2 1 0 1 1 1 1 1 1 1 <td>BIVAL V</td> <td>FIOXOCEPHANDAE</td> <td>SIZE</td> <td>2</td> <td>14</td> <td>0</td> <td>0</td> <td>19</td> <td>5</td> <td>9</td> <td>/</td> <td>-</td> <td>5</td> <td>13</td> <td>13</td> <td>100</td> <td>0.5</td>	BIVAL V	FIOXOCEPHANDAE	SIZE	2	14	0	0	19	5	9	/	-	5	13	13	100	0.5
Sector	BAB	Arthritica bifurca	<2	0	0	3	2	2	0	0	1	2	11	2	1	24	2.0
Teals Natrownus shachbuy <5 0 0 2 2 0 1 0 2 0 1 0 2 1 0 1 0 1 0 1 0 <td></td> <td></td> <td>>2</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>8</td> <td>0.7</td>			>2	0	0	0	4	1	0	0	0	0	1	1	1	8	0.7
BAS Austronemus studnhunyi <5 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 </td <td></td> <td></td> <td>Total</td> <td>0</td> <td>0</td> <td>3</td> <td>6</td> <td>3</td> <td>0</td> <td>0</td> <td>1</td> <td>2</td> <td>12</td> <td>3</td> <td>2</td> <td>32</td> <td>2.7</td>			Total	0	0	3	6	3	0	0	1	2	12	3	2	32	2.7
>5 0 0 1 0 1 0 0 0 0 0 1 1 BML Macamona Bian <5 0 <	BAS	Austrovenus stutchburyi	<5	0	0	2	0	2	0	2	0	1	0	0	2	9	0.8
International islama S O			>5	0	0	1	0	1	0	1	0	0	0	0	1	4	0.3
BML Maccantoria micra -5 0	514		Total	0	0	3	0	3	0	3	0	1	0	0	3	13	1.1
3-15 1 0 <td>BML</td> <td>Macamona liliana</td> <td><5 5-15</td> <td>0</td> <td>0.0</td>	BML	Macamona liliana	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Total 1 1 0 0 0 3 1 1 1 0 9 03 BNH Mucula harthigiana -2 19 20 67 2 87 8 8 9 9 15 16 8 7 19 82 87 73 8 8 9 9 10 10 10 10 00 0			>15	1	1	0	0	0	0	2	1	1	0	1	0	6	0.5
BNH Mucula hartrigiana -2 10 20 64 7 7 6 8 9 91 63 16 7 19 82 22 22 7 10 33 10 50 35 154 877 19 82 827 77.3 10 35 157 60 55 15 0			Total	1	1	0	0	0	0	3	1	1	1	1	0	9	0.8
>2 0 6 47 7 6 8 37 50 68 27 80 35 15 87 73.9 BPA Paphies australis -5 0	BNH	Nucula hartvigiana	<2	19	29	70	2	87	25	89	9	91	53	16	72	562	46.8
Total 19 35 117 9 93 33 126 59 127 80 85 164 87 73.9 BPA Paphies australis 55 0 <td></td> <td></td> <td>>2</td> <td>0</td> <td>6</td> <td>47</td> <td>7</td> <td>6</td> <td>8</td> <td>37</td> <td>50</td> <td>36</td> <td>27</td> <td>19</td> <td>82</td> <td>325</td> <td>27.1</td>			>2	0	6	47	7	6	8	37	50	36	27	19	82	325	27.1
BPA Paphies australis <5 0			Total	19	35	117	9	93	33	126	59	127	80	35	154	887	73.9
5-15 0 <td>BPA</td> <td>Paphies australis</td> <td><5</td> <td>0</td> <td>0.0</td>	BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
3-13 0 <td></td> <td></td> <td>5-15</td> <td>0</td> <td>0.0</td>			5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Theora lubrica c, b, a c, b c, b c, b c, b c, b c, c c			> IS Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Note function 35 1 1 0 1 0 1 0 0 0 0 2 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0	втні	Theora lubrica	<5	4	5	9	1	35	4	11	6	6	4	0	4	89	7.4
Total 5 6 9 2 36 4 11 6 6 0 5 96 8.0 CUMACEANS 0	5	inoona nasinoa	>5	1	1	0	1	1	0	0	0	0	2	0	1	7	0.6
CUMACEANS Image: Columostipal lemurum Image: Columosti			Total	5	6	9	2	36	4	11	6	6	6	0	5	96	8.0
CCL Columosphile lemnum 0 1 0	CUMAC	EANS															
GASTROPODS Image	CCL	Colurostylis lemurum		0	1	0	0	0	0	1	0	0	0	0	0	2	0.2
GCA Cominella adspera 0	GASTRO	PODS															
GNHE Notoscrines sp. 0	GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
OTHER OAN Anthopleura aureoradiata 0 PBC< Pol	GNHE Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
Oran Antinghetria attributidation 0 <			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
DRA Aquilaspio aucklandica 0 </th <th colspan="2"></th> <th>0</th> <th>•</th> <th>0.0</th>			0	0	0	0	0	0	0	0	0	0	0	0	•	0.0	
PAGL Aglaophamus sp. 0 PEGL Colidadini Colidadini	PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO Anicles axycephala 0	PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
PAR Aricidea sp. 0 1 0 0 1 1 0	PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBCC Polydorids (Baccardia syrtis) 0	PAR	Aricidea sp.		0	1	0	0	1	1	0	0	0	0	0	0	3	0.3
PCOS Cossura sp. 0	PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC Euchone sp. 0	PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	2	0	0	2	0.2
PGLY Gly corra sp. 0 4 4 0 3 5 0 1 1 4 1 2/2 2/3 PGLY Glycera sp. 2 0 0 0 0 0 0 1 1 4 1 2/3 2/3 7 0.6 PMD Magelona dakini 1 4 1 4 1 4 1 4 1 6 1 8 31 17 103 8.6 PMD Magelona dakini 1 4 1 4 1 4 3 3 4 1 0 7 3 2 33 2.8 33 2.	PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Derived light or product of the construct fill formis) 1 0		Gunada sp. Glycera sp.		2	4	4	0	0	0	0	1	0	2	4	2	7	2.3
PMD Magelona dakini 1 4 1 4 3 3 4 1 0 7 3 2 33 2.8 PNIC Nereidae 2 1 3 9 2 5 2 2 4 3 2 2 33 2.8 PNIC Nereidae 2 1 3 9 2 5 2 2 4 3 2 2 37 3.1 POP Orbinia papillosa 0	PHF	Capitellidae (Heteromastus fi	iliformis)	3	3	12	0	7	4	11	6	1	8	31	17	103	8.6
PNIC Nereidae 2 1 3 9 2 5 2 2 4 3 2 2 37 3.1 POP Orbinia papillosa 0	PMD	Magelona dakini		1	4	1	4	3	3	4	1	0	7	3	2	33	2.8
POP Orbinia papillosa 0	PNIC	Nereidae		2	1	3	9	2	5	2	2	4	3	2	2	37	3.1
IPPAR Paraonidae 0 0 0 0 0 1 0 1 0 2 0.2 NON INUICATOR SPECIES I I I 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0	POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
INDIMINATION SPECIES Image: constraint of the synthesis of the synthesynthesis of the synthesis of the synthesis of the synthesis of the	PPAR	Paraonidae		0	0	0	0	0	0	1	0	0	0	1	0	2	0.2
CAMPH Amplipods 0		Amphinedo		0	0	0	0	4	0	0	0	0	0	0	0	4	0.1
COUND OTADS 0 <td< td=""><td>CCRAB</td><td>Ampnipods Crabs</td><td></td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>0</td><td>1</td><td>5</td><td>0.1</td></td<>	CCRAB	Ampnipods Crabs		1	0	0	0	0	0	1	1	0	0	0	1	5	0.1
CISO Isopods 0	CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST Ostracods 0 <t< td=""><td>CISO</td><td>Isopods</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td></t<>	CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR Shrimps/Mysids 6 8 4 6 4 0 7 0 4 0 5 1 45 3.8 COTH Other Crustaceans 0 </td <td>COST</td> <td>Ostracods</td> <td></td> <td>0</td> <td>0.0</td>	COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH Other Crustaceans 0	CSHR	Shrimps/Mysids		6	8	4	6	4	0	7	0	4	0	5	1	45	3.8
BOTH Bivalves 3 0 6 0 7 3 4 0 2 0 1 2 28 2.3 GOTH Gastropods 0 1 3 1 1 1 4 2 2 0 1 2 28 2.3 GOTH Gastropods 0 1 3 1 1 1 4 2 2 0 2 3 20 1.7 EFEZ Fellaster zealandiae 0	COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Gastropods 0 1 3 1 1 1 4 2 2 0 2 3 20 1.7 EFEZ Fellaster zealandiae 0	BOTH	30TH Bivalves		3	0	6	0	7	3	4	0	2	0	1	2	28	2.3
Li Lz reliaster izerant/det 0<	GOTH	Gastropods		0		3	1	1		4	2	2	0	2	3	20	1.7
ONEM Nemerteans 0 <	EFEZ FHOI	FEZ Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH Polychaetes 0 0 0 0 1 0 1 0 0 3 1 0 6 0.5 OOLIG Oligochaetes 0 0 0 0 0 1 0 1 0 0 0 1 0.1	ONEM	HOL Holuthurians NEM Nemerteans		0	0	0	0	0	0	0	0	0	0	0	0	o	0.0
OOLIG Oligochaetes 0 0 0 0 0 0 1 0 0 0 0 1 0.1 OFLAT Flatworms 0	POTH	Polychaetes		0	0	0	0	1	0	1	0	0	3	1	0	6	0.5
OFLAT Flatworms 0 <	OOLIG	Oligochaetes		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
OEDW Edwardsia 0 <t< td=""><td>OFLAT</td><td>Flatworms</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td></t<>	OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
UTHER MISC. Uther 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	TOTAL	MISC. Other		0	0	0	0	0	0	0	0	0	121	0	0	0	0.0

KA April 2002

					COR		BER									
INDICAT	OR SPECIES		2	3	4	5	6	7	8	9	10	12	13	14	TOTAL	MEAN
AMPHIP	ODS		1													
ACOR	Corophiidae		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae		0	2	0	1	0	0	0	4	0	1	0	1	9	0.8
BIVALV	ES	SIZE														
BAB	Arthritica bifurca	<2	0	0	4	2	3	7	4	9	0	3	5	4	41	3.4
		>2	0	0	0	0	1	12	0	0	0	0	4	0	17	1.4
DAC	Australianus stutabliumi	I otal	0	0	4	2	4	19	4	9	0	3	9	4	00 501	4.0
BAS	Austrovenus stutchburyi	<5	30	21	33	26	34	21	53	25	26	51	120	0	501	40.4
		Total	38	25	43	32	41	22	54	57	32	53	127	120	644	53.7
BML	Macamona liliana	<5	1	0	0	0	4	1	0	0	1	1	1	1	10	0.8
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	1	0	1	0	1	0	1	0	1	1	0	2	8	0.7
		Total	2	0	1	0	5	1	1	0	2	2	1	3	18	1.5
BNH	Nucula hartvigiana	<2	3	2	0	7	6	3	2	10	5	11	3	5	57	4.8
		>2	6	5	5	31	30	34	14	73	58	52	32	58	398	33.2
		Total	9	7	5	38	36	37	16	83	63	63	35	63	455	37.9
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
втні	Theora lubrica	<5	2	2	4	5	9	7	1	14	5	8	2	3	62	5.2
DITIE		>5	2	2	2	1	3	8	4	4	4	5	3	1	39	3.3
		Total	4	4	6	6	12	15	5	18	9	13	5	4	101	8.4
CUMACIEANS																
CCL	Colurostylis lemurum		0	0	5	0	1	0	0	0	0	0	1	1	8	0.7
GASTR	OPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	E Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																
OAN Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
POLYCH	IAETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAGL	Agiaopnamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
PAR	Auricidea sn		0	0	1	2	0	0	0	0	1	1	0	0	5	0.0
PBOC	Polydorids (Boccardia svrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0 0	0.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		2	2	4	0	3	0	0	0	0	0	9	6	26	2.2
PGLY	Glycera sp.		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
PHF	Capitellidae (Heteromastus fi	iliformis)	3	2	1	3	9	2	10	23	26	19	9	2	109	9.1
	Magelona dakini Naraidaa		4	6	4	6	41	23	5	12		27	12	21	168	14.0
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	1	0	0	0	0	2	1	0	4	0.3
NON IN	DICATOR SPECIES															
CAMPH	Amphipods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCRAB	Crabs		0	0	0	0	0	1	0	1	0	0	0	0	2	0.2
CCUM	Cumaceans		0	1	0	2	0	1	0	0	0	4	1	0	9	0.8
CISO	Isopods		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
COST	Ostracods Shrimps/Musida		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
СОТН	Other Crustaceans		2 0	0	0	0	0	0	0	2 0	4	0	0	0	20	0.0
вотн	Bivalves		21	4	4	6	24	18	24	6	34	7	19	25	192	16.0
GOTH	тн Gastropods		1	0	0	0	1	0	0	2	1	3	0	0	8	0.7
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	DL Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH	Polychaetes		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
	Cilgochaetes		0	0	0		0	0		0	0	0		1	1	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
OTHER	EDW <i>Edwardsia</i> THER Misc. Other		ō	ō	0	0	0	0	0	ō	ō	Ő	0	0	0	0.0
TOTAL	TOTAL		89	55	86	101	181	141	121	221	183	205	234	257	1874	156.2

GC April 2001

					COR	E NUN	IBER												
INDICAT	OR SPECIES		1	2	3	4	5	7	9	10	11	12	14	16	17	18	19	TOTAL	MEAN
AMPHIP	ODS																	-	
ACOR	Corophiidae		0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE																	
BAB	Arthritica bifurca	<2	0	0	0	0	0	0	1	0	1	0	1	7	4	0	2	16	1.1
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	1	0	1	0	1	7	4	0	2	16	1.1
BAS	Austrovenus stutchburyi	<5	5	3	3	6	6	3	8	5	0	9	5	16	14	14	5	102	6.8
		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DMI	Masamana liliana	I Otal	5	3	3	0	0	3	8	5	0	9	5	10	14	14	5	102	0.0
DIVIL	Macamona illiana	<0 5-15	0	0	1	0	1	0	0	1	0	1	0	0	4	0	2	5	0.7
		>15	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
		Total	1	0	1	0	1	0	0	1	1	1	1	1	5	1	2	16	1.1
BNH	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	U U	>2	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3	0.2
		Total	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	3	0.2
BPA	Paphies australis	<5	6	4	11	1	45	17	8	8	5	56	7	3	0	9	15	195	13.0
		5-15	8	3	2	0	5	8	2	2	1	5	31	4	1	16	1	89	5.9
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	14	7	13	1	50	25	10	10	6	61	38	7	1	25	16	284	18.9
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OUMAAO	TANO	i otai	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
COMAC	Calumatulia la munum		0	4	0	4	0	4	0	4	0	0	0	0	0	0	0	10	4.4
CASTR			0	4	2	1	0	4	0	1	0	2	0	0	2	0	0	10	1.1
GASTR	Cominalla adapara		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Notoscmes sp		2	0	0	1	0	1	2	0	0	1	1	1	5	1	0	15	1.0
	Notoacinea sp.		2	0	0	1	0	1	2	0	0	-	-	-	5	1	0	15	1.0
OAN	Anthonleura aureoradiata		0	0	0	0	1	0	0	0	0	1	2	0	0	0	0	4	0.3
POL YCH	AFTES		Ū	Ū	Ŭ	Ū		Ū	0	0	Ū		-	0	0	•	Ŭ		0.0
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0.0
PAO	Aonides oxycephala		64	82	126	125	67	77	157	59	74	124	59	113	130	138	122	1517	101.1
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Polydorids (Boccardia syrtis))	1	0	0	2	0	1	0	1	0	0	0	0	0	0	0	5	0.3
PCOS	Cossura sp.		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PHF	Capitellidae (Heteromastus f	tiliformis)	1	0	0		1	0	1	0	2	1	2	2	2	0	1	20	1.3
	Nagelona dakini Noroidoo		2	5	4	1	0	0	5	5	4	4	5	2	7	0	2	50	0.0
POP	Orbinia nanillosa		0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ō	0.0
NON IN	DICATOR SPECIES		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CAMPH	Amphipods		0	1	0	0	0	0	0	0	0	1	1	2	1	0	0	6	0.4
CCRAB	Crabs		2	0	0	1	0	2	1	0	0	0	1	0	1	0	1	9	0.6
ССЛМ	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		2	6	4	11	4	0	2	1	4	1	2	14	4	3	4	62	4.1
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	1	0	0	0	0	0	2	0	0	2	0	5	0.3
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		3	2	2	1	3	0	4	4	0	4	1	1	2	2	1	30	2.0
GUIH	Gastropods		2	0	0	0	0	1	U		0	0		0	0	U	U	5	0.3
EHOI	r enaster zealariolae Holuthurians		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.0
ONEM	Nemerteans		0	0	0	0	0	0	0	0	1	0	2	0	0	1	2	6	0.4
POTH	Polychaetes		2	8	12	10	7	3	11	1	6	11	4	7	11	, 16	6	115	7.7
OOLIG	Oligochaetes		0	0	0	1	0	0	0	4	2	1	1	0	0	1	1	11	0.7
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	1	0	0	1	0	1	0	0	0	3	0.2
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			102	118	169	168	141	126	203	93	101	223	129	176	191	206	166	2312	154.1

GC October 2001

INDICATOR SPECIES 1 3 4 5 6 7 8 10 11 12 13 15 TOTAL Method ACCR Corophizize 0 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>COR</th> <th>E NUN</th> <th>IBER</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						COR	E NUN	IBER									
AMPHIPOS Image: Constraint of the second secon	INDICAT	OR SPECIES		1	3	4	5	6	7	8	10	11	12	13	15	TOTAL	MEAN
ACOR ACOR Comphishe 0	AMPHIP	ODS															
APHOX Phonocomphalidae SZE I	ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIAL VISS GIVE Image: Constraint of the second se	APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAB Arthrike bifunca -2 0	BIVALVI	ES	SIZE														
S-2 0 0 0 0 0 0 0 0 1 2 0 0 1 2 1 0 0 0 0 1 2 0 0 1 0 0 1 0 1 0 5 7 1 1 0 5 7 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0	BAB	Arthritica bifurca	<2	0	0	0	7	0	0	2	0	0	0	12	0	21	1.8
BAS Austrovenus stutchburyi c5 3 11 6 8 4 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 11 10 0.0 <			>2	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
BAS Austrovenus salucidary <3 3 1 0 6 4 4 7 5 2 7 10 5 7/2 60.0 Total 3 11 8 12 5 4 8 5 2 7 11 6 82 68. BML Macamona illiana <5	DAC	Austrausanus atutakhumi	I otal	0	0	0	8	0	0	2	0	0	0	12	0	22	1.0
Total 0 1 1 0 1 <td>BAS</td> <td>Austrovenus stutchburyi</td> <td><5</td> <td>3</td> <td>0</td> <td>0</td> <td>8</td> <td>4</td> <td>4</td> <td>1</td> <td>5</td> <td>2</td> <td>0</td> <td>10</td> <td>5</td> <td>10</td> <td>6.0</td>	BAS	Austrovenus stutchburyi	<5	3	0	0	8	4	4	1	5	2	0	10	5	10	6.0
BML Macamona Illiana 0			Total	3	11	8	12	5	4	8	5	2	7	11	6	82	6.8
International matrix 5-15 0 0 0 1 0 2 0	BMI	Macamona liliana	<5	0	0	0	0	0	1	0	0	1	1	0	0	3	0.3
>15 0 0 0 1 0 0 1 0 1	22	madamena mana	5-15	0	0	0	0	0	1	0	2	0	0	0	0	3	0.3
Total 0 0 0 0 1 0 2 1 2 1 1 11 0.9 BNH Nucula harwigiana <2			>15	0	0	0	1	0	0	1	0	0	1	1	1	5	0.4
BNH Nucula hartvigiana -2 0 0 0 0 1 0			Total	0	0	0	1	0	2	1	2	1	2	1	1	11	0.9
S2 0	BNH	Nucula hartvigiana	<2	0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
Total 0 0 1 0 0 1 0 0 0 0 0 2 2 0 2 0 2 0 3 22 0 <td></td> <td></td> <td>>2</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0.1</td>			>2	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
BPA Paphies austrails <5 4 6 2 8 1 0 3 22 0 2 13 63 5.3 5-15 0			Total	0	0	0	1	0	0	1	0	0	0	0	0	2	0.2
5-15 9 5 0 4 25 1 6 1 0 <td>BPA</td> <td>Paphies australis</td> <td><5</td> <td>4</td> <td>6</td> <td>2</td> <td>8</td> <td>1</td> <td>0</td> <td>3</td> <td>22</td> <td>0</td> <td>2</td> <td>2</td> <td>13</td> <td>63</td> <td>5.3</td>	BPA	Paphies australis	<5	4	6	2	8	1	0	3	22	0	2	2	13	63	5.3
Total 13 0 0 0 0 0 0 1 10 28 13 3 4 14 12.0 BTHL Theora lubrica <5			5-15	9	5	0	4	25	1	6	6	13	1	2	8	80	6.7
India 13 14 12 12 26 1 10 28 13 3 4 21 144 120 BTHL Theora lubrica <5			>15	0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
Birl Theora lubrica <s< th=""> 0</s<>	DTU	The sea behalo a	Iotal	13	11	2	12	26	1	10	28	13	3	4	21	144	12.0
Total 0 <td>BIHL</td> <td>l heora lubrica</td> <td><5</td> <td>0</td> <td>0.0</td>	BIHL	l heora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMACIEANS Image: Control of the control			c< Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Other Columostrylis lemurum 0 1 3 1 0 1 0 1 1 1 2 3 14 1.2 GASTROPODS 0	CUMACI	TANS	Total	0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
Observed O<	CCI	Colurostylis lemurum		0	1	3	1	0	1	0	1	1	1	2	3	14	1.2
OCA Cominella adspera 0	GASTR	PODS		0		0		Ū		Ū				-	0		
CNHE Notoacmea sp. 2 2 0	GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER O <td>GNHE</td> <td>Notoacmea sp.</td> <td></td> <td>2</td> <td>2</td> <td>0</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>2</td> <td>0</td> <td>6</td> <td>1</td> <td>17</td> <td>1.4</td>	GNHE	Notoacmea sp.		2	2	0	2	0	1	0	1	2	0	6	1	17	1.4
OAN Anthopleura aureoradiata 0 0 0 0 0 1 0 0 0 1 0.1 POLYCHAETES 0	OTHER																
POLYCHAETES Image: Constraint of the second se	OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
PAA Aquilaspio aucklandica 0 <td>POLYCH</td> <td>IAETES</td> <td></td>	POLYCH	IAETES															
PAGL Aglaophamus sp. 0	PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO Aonides oxycephala 31 116 63 66 62 128 99 52 102 96 73 110 998 83.2 PAR Aricidea sp. 0 <td>PAGL</td> <td>Aglaophamus sp.</td> <td></td> <td>0</td> <td>0.0</td>	PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR Aricidea sp. 0	PAO	Aonides oxycephala		31	116	63	66	62	128	99	52	102	96	73	110	998	83.2
PBOC Polydorids (Boccardia syrtis) 0	PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS Cossura sp. 0	PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PECC Eucrone sp. 0	PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY Glyacra sp. 0	PEUC	Eucrione sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PHF Capitellidae (Heteromastus filiformis) 0 0 1 0 <td></td> <td>Gurada sp.</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0.0</td>		Gurada sp.		0	0	0	0	0	0	0	1	0	0	0	0	1	0.0
PMD Magelona dakini 0	PHF	Capitellidae (Heteromastus fi	liformis)	0	0	1	0	1	0	0	0	0	1	1	0	4	0.3
PNIC Nereidae 1 1 0 1 1 0 1 2 0 2 4 0 13 1.1 POP Orbinia papillosa 0 <	PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POP Orbinia papillosa 0	PNIC	Nereidae		1	1	0	1	1	0	1	2	0	2	4	0	13	1.1
PPAR Paraonidae 0 <	POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON INDICATOR SPECIES 0	PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAMPH Amphipods 0	NON INE	ICATOR SPECIES															
CCRAB Crabs 2 0 0 1 0	CAMPH	Amphipods		0	0	0	0	0	0	0	0	0	0	2	0	2	0.2
CCUM Cumaceans 0 <t< td=""><td>CCRAB</td><td>Crabs</td><td></td><td>2</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3</td><td>0.3</td></t<>	CCRAB	Crabs		2	0	0	1	0	0	0	0	0	0	0	0	3	0.3
CISO Isopods 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 4 0.3 3 <t< td=""><td>CCUM</td><td>Cumaceans</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td></t<>	CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	CISO	Isopods		1	0	0	0	1	0	0	1	0	0	0	1	4	0.3
ICSHP Shrimps/Myside 11 1 1 1 1 1 1 1 1 1 5 0 6 0 1 1 29 23	COSI	Shrimps/Muside		1	1	1	11	0	1	1	5	0	6	0	1	28	0.0
	СОТН	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	2.5
	вотн	Bivalves		0	2	1	0	0	1	2	1	0	1	0	1	9	0.8
GOTH Gastropods 0 2 0 1 0 1 0 1 0 1 1 7 0.6	GOTH	Gastropods		0	2	0	1	0	1	0	1	0	0	1	1	7	0.6
EFEZ Fellaster zealandiae 0	EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL Holuthurians 0	EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM Nemerteans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0.1	ONEM	Nemerteans		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
POTH Polychaetes 0 13 5 7 0 7 12 2 1 2 17 4 70 5.8	POTH	Polychaetes		0	13	5	7	0	7	12	2	1	2	17	4	70	5.8
OOLIG Oligochaetes 0	OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAI Flatworms 0 1 1 0 <	OFLAT	Flatworms		0	1	1	0	0	0	0	0	0	0	0	0	2	0.2
		Euwarasia Miao Othor		0		0	0	0	0	0	0	0	0	0		2	0.2
	TOTAL			54	162	85	124	90	147	137	103	122	122	134	151	1437	119.8

GC April 2002

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	2	3	4	5	6	8	9	10	11	13	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	1	0	0	1	0	0	0	0	0	0	2	0.2
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE							_				10		40	
BAB	Arthritica bifurca	<2	2	0	9	0	1	2	5	4	2	3	12	1	40	3.3
		Total	2	0	9	0	1	2	6	5	2	3	12	1	43	3.6
BAS	Austrovenus stutchburyi	<5	2	4	1	0	2	12	5	8	7	2	20	5	68	5.7
		>5	0	1	0	0	1	0	0	0	0	0	1	2	5	0.4
		Total	2	5	1	0	3	12	5	8	7	2	21	7	73	6.1
BML	Macamona liliana	<5	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
		5-15	1	0	0	0	0	0	0	0	0	0	1	1	3	0.3
		>15	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
DNILL	Nu sula kartuisiana	i otal	1	0	0	0	2	0	0	0	0	0	1	1	0	0.4
	Nucula nartviglaria	~2	0	0	2	0	2	0	0	0	2	1	0	0	7	0.1
		Total	0	0	2	0	2	0	0	1	2	1	0	0	8	0.7
BPA	Paphies australis	<5	2	14	4	1	11	7	0	12	17	3	1	10	82	6.8
		5-15	1	4	4	1	0	5	0	6	12	6	0	8	47	3.9
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	3	18	8	2	11	12	0	18	29	9	1	18	129	10.8
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	TANC	l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COMAC	Colurostulis lomurum		7	0	0	4	0	6	4	17	6	2	3	12	80	67
GASTR			/	9	0	4	3	0	4	17	0	2	3	15	00	0.7
GCA	Cominella adspera		0	0	1	0	0	2	0	0	0	1	0	0	4	0.3
GNHE	Notoacmea sp.		0	0	1	0	0	0	0	1	0	1	6	0	9	0.8
OTHER											-		-	-		
OAN	Anthopleura aureoradiata		0	0	2	0	0	0	1	1	2	0	0	0	6	0.5
POLYCH	AETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		101	107	74	10	107	66	44	112	75	98	114	116	1024	85.3
PAR	Aricidea sp.		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
PEOC	Cossura en		0	0	0	0	0	0	19	0	0	0	0	0	20	2.3
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	1	1	0	0	0	2	1	0	5	0.4
PHF	Capitellidae (Heteromastus fi	liformis)	0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PMD	Magelona dakini		0	0	0	0	0	0	0	1	1	0	1	0	3	0.3
PNIC	Nereidae		11	8	25	1	9	24	29	31	13	16	32	5	204	17.0
	Orbinia papiliosa Paraopidao		0	0	0	1	0	0	0	0	0	0	0	0	1	0.0
			0		0	'	0	0	0	0	0	0	0	0		0.1
CAMPH	Amphipods		0	0	6	0	0	1	0	0	0	0	0	0	7	0.6
CCRAB	Crabs		2	0	2	0	0	2	2	0	0	0	0	2	10	0.8
ССИМ	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		1	22	34	4	18	49	7	30	53	21	20	86	345	28.8
COST	Ostracods		0	0	0	0	0	0	2	0	0	0	0	0	2	0.2
CSHR	Shrimps/Mysids		4		3	0	0	2	0	0	0	2	7	0	19	1.6
BOTH	Other Crustaceans		0	23	165	0	19	179	0 /15	74	115	97	0	177	2	0.2
GOTH	Gastropods		0	1	0	0	0	1	0	1	1	0	2	0	6	0.5
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		1	0	0	2	2	3	0	0	3	1	1	0	13	1.1
ONEM	Nemerteans		2	0	7	1	1	1	3	2	4	0	4	0	25	2.1
POTH	Polychaetes		3	9	30	5	8	10	0	21	21	0	8	13	128	10.7
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	8	0	0	8	0.7
	rialworms Edwardsia		0	0	0	0	0		0	0	0		0	0	2	0.2
OTHER	Misc. Other		0	14	0	0	0	0	0	0	0	0	0	0	14	1.2
TOTAL			144	219	372	36	222	376	538	323	335	255	325	441	3586	298.8

TP April 2001

					COR	E NUN	IBER												
INDICAT	OR SPECIES		4	5	6	7	8	9	10	11	12	13	14	15	17	18	20	TOTAL	MEAN
AMPHIP	ODS																		
ACOR	Corophiidae		1	1	0	1	2	0	0	0	1	1	1	0	2	0	0	10	0.7
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	125 A #1. 22 - 1 7	SIZE	0	0	0			0	0	0	0	0		0	0	0	0	4	0.1
BAB	Arthritica difurca	<2	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0.1
		Total	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	2	0.1
BAS	Austrovenus stutchburyi	<5	134	107	143	148	42	314	105	141	78	107	119	50	32	38	26	1584	105.6
	,	>5	2	0	0	0	8	11	1	1	1	0	0	8	3	5	0	40	2.7
		Total	136	107	143	148	50	325	106	142	79	107	119	58	35	43	26	1624	108.3
BML	Macamona liliana	<5	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Nucula hartuigiana	Total	145	0	116	0	0	110	0	117	100	152	105	0	15	10	70	1919	97.5
	Nucula Haltviyiana	>2	145	90 94	112	03 145	129	96	00 158	191	120	90	132	37 135	30	80	127	1810	120.7
		Total	298	190	228	228	165	208	238	308	258	243	237	172	45	98	206	3122	208.1
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	39	43	44	35	19	3	28	37	38	38	37	18	0	27	43	449	29.9
		Total	39	43	44	35	19	3	28	37	38	38	37	18	0	27	43	449	29.9
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	FANS	TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
CCL	Colurostvlis lemurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
GASTR	OPODS															-			
GCA	Cominella adspera		0	0	0	2	1	0	3	0	1	0	1	0	0	0	1	9	0.6
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																			
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCI	IAETES																	_	
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAGL	Agiaophanius sp. Aonides oxycenhala		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0.0
PBOC	Polydorids (Boccardia syrtis))	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.	filiformia)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Magelona dakini	iiiionnis)	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	2	0.1
PNIC	Nereidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON IN	DICATOR SPECIES																		
CAMPH	Amphipods		0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0.3
CCRAB	Crabs		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CLOW	leopode		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	1	1	1	0	0	0	1	0	0	1	5	0.3
СОТН	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		0	0	1	0	0	7	1	0	0	0	3	1	1	0	1	15	1.0
GOTH	Gastropods		2	0	0	2	0	0	1	0	1	1	0	0	0	0	1	8	0.5
EFEZ	rellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
	Nemerteans		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0.0
POTH	Polychaetes		0	0	0	0	0	o	0	0	0	o	0	0	1	ō	0	1	0.1
OOLIG	Oligochaetes		ō	0	0	0	0	0	Ő	ō	Ő	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			477	342	416	416	239	546	378	488	380	390	398	250	92	168	280	5260	350.7

TP October 2001

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	4	5	6	7	8	9	10	11	12	13	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	Filoxocephalidae	SIZE	-		0	0	0	0	0	0	0	0	0	0		0.2
BAB	Arthritica bifurca	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
5,15	, and shared	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS	Austrovenus stutchburyi	<5	0	0	3	1	1	0	1	0	0	2	3	2	13	1.1
		>5	3	2	0	11	2	0	0	1	3	4	1	0	27	2.3
DNAL	Manamana liliana	l otal	3	2	3	12	3	0	1	1	3	6	4	2	40	3.3
BML	Macamona IIIana	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
		Total	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
BNH	Nucula hartvigiana	<2	0	10	10	2	0	1	9	16	4	2	0	20	74	6.2
		>2	86	122	119	121	32	79	97	99	63	30	10	161	1019	84.9
	Destrice exercise	Total	86	132	129	123	32	80	106	115	67	32	10	181	1093	91.1
вра	Papnies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	29	42	46	21	0	20	39	42	0	0	0	41	280	23.3
		Total	29	42	46	21	0	20	39	42	0	0	0	41	280	23.3
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	Colurostulio lomurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GASTR			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GCA	Cominella adspera		1	1	0	0	0	0	1	0	2	0	0	0	5	0.4
GNHE	Notoacmea sp.		0	0	3	1	0	0	3	2	0	0	0	3	12	1.0
OTHER																
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	AETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAGL	Agiaopnamus sp. Aonides oxycenhala		0	0	0	0	0	1	0	0	0	0	0	0	2	0.2
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp. Glucora sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PHE	Capitellidae (Heteromastus fi	iliformis)	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PMD	Magelona dakini		0	0	0	0	1	0	0	0	1	1	1	0	4	0.3
PNIC	Nereidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAMPH	Amphipods		2	0	0	1	6	2	0	0	0	0	3	3	17	14
CCRAB	Crabs		0	0	2	0	0	0	0	0	0	0	2	0	4	0.3
ссим	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	1	1	0	0	0	0	0	1	4	0.3
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Shrimps/Mysids		0	1	0	0	0	1	0	0	1	0	2	0	5	0.4
вотн	Bivalves		2	0	0	0	1	0	0	0	2	1	0	1	5	0.5
GOTH	Gastropods		0	1	1	0	0	0	2	0	1	0	1	2	8	0.7
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	3	0	0	0	3	1	1	0	8	0.7
POTH	Polychaetes		1	0	0	0	2	0	0	0	4	2	0	0	9	0.8
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			125	181	184	159	50	106	152	160	85	44	26	236	1508	125.7

TP April 2002

					COR		BER									
INDICAT	OR SPECIES		1	2	3	5	6	7	8	10	11	12	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Phoxocephalidae	SIZE	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
BAB	Arthritica bifurca	-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
D/ (D		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS	Austrovenus stutchburyi	<5	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
		>5	8	0	0	0	9	3	0	0	0	2	3	1	26	2.2
5 14		Total	8	0	1	0	9	3	0	0	0	2	3	1	27	2.3
BIVIL	Macamona IIIana	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BNH	Nucula hartvigiana	<2	0	8	1	7	22	8	7	4	3	4	0	5	69	5.8
		>2	34	111	49	75	142	22	81	99	34	44	27	73	791	65.9
		Total	34	119	50	82	164	30	88	103	37	48	27	78	860	71.7
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	35	41	37	3	0	35	38	25	0	0	37	251	20.9
		Total	0	35	41	37	3	0	35	38	26	0	0	37	252	21.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANS															
CCL	Colurostylis lemurum		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
GASTR	Cominalla adenara		0	0	0	0	2	0	3	0	0	0	0	0	5	0.4
GOA	Notoacmea sp		0	0	0	0	2	0	0	0	0	0	0	0	0	0.4
OTHER			Ű		Ū		•	•	Ű					•	-	
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	IAETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Ancidea sp. Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.	· · ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Capitellidae (Heteromastus f	iliformis)	0	0	0	0	0	1	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON IN	DICATOR SPECIES															
CAMPH	Amphipods		0	0	0	2	0	2	0	1	2	5	9	8	29	2.4
CCHAB	Crabs		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
CISO	Isopods		0	0	2	3	1	2	0	0	0	1	0	1	10	0.8
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	1	4	0	0	0	5	0.4
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		2	0	0	2	0	1	1	2	2	4	0	2	16	1.3
GOTH FFF7	Gastropous Fellaster zealandiae		0	0	0	0	0	4	0	0	0	2	3	0	0 7	0.5
EHOL	Holuthurians		1	0	0	0	ő	0	0	0	Ő	Ő	0	Ő	1	0.1
ONEM	Nemerteans		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
POTH	Polychaetes		0	0	0	0	0	0	0	0	0	0	1	1	2	0.2
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			45	154	95	126	181	43	128	147	71	62	48	129	1229	102.4

MI April 2001

					COR	E NUN	BER												
INDICAT	OR SPECIES		2	5	6	8	10	11	12	13	14	15	16	17	18	19	20	TOTAL	MEAN
	ODS																		
ACOB	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE																	
BAB	Arthritica bifurca	<2	0	0	0	0	0	2	1	0	0	6	0	0	1	0	9	19	1.3
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	2	1	0	0	6	0	0	1	0	9	19	1.3
BAS	Austrovenus stutchburyi	<5	1	2	4	5	0	2	9	3	0	0	3	0	6	9	2	46	3.1
		>5	0	1	2	2	1	1	1	3	0	2	0	0	11	0	3	27	1.8
		Total	1	3	6	7	1	3	10	6	0	2	3	0	17	9	5	73	4.9
BML	Macamona liliana	<5	0	1	0	1	0	0	2	1	1	1	1	0	1	0	1	10	0.7
		5-15 \\15	2	2	4	2	2	3	4	1	2	1	2	2	1	6	2	37	0.0
		Total	5	3	4	4	3	4	6	3	4	2	4	2	2	9	4	59	3.9
BNH	Nucula hartvigiana	<2	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	3	0.2
2	i la cula na culgiana	>2	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0.1
		Total	0	0	0	1	0	2	1	0	0	0	0	0	1	0	0	5	0.3
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	TANS	TOLAI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
COMAC	Colurostylis lemurum		0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	3	0.2
GASTR	PODS		0	0		0		0			0	0	0	'	0	-	0	, ,	0.2
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	1	0	3	1	0	1	0	0	0	1	1	4	12	0.8
OTHER	•																		
OAN	Anthopleura aureoradiata		3	1	1	1	4	1	2	0	2	1	0	4	2	1	0	23	1.5
POLYCH	IAETES																		
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		52	56	24	79	57	10	43	42	69	45	51	42	60	70	30	730	48.7
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Polydorids (Boccardia syrtis)		0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	2	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		o	o	0	0	0	0	o	o	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2	0.1
PHF	Capitellidae (Heteromastus fi	iliformis)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
PNIC	Nereidae		2	1	1	2	0	2	2	0	2	1	0	1	1	0	0	15	1.0
POP	Orbinia papillosa		1	0	0	0	1	0	0	0	2	0	2	0	0	0	0	6	0.4
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
	Amphipodo		0	0	0	0	0	0	0	0	0	1	0	0	0	2	1	4	0.2
CCBAB	Crabs		0	0	0	1	2	1	0	1	1	1	0	1	0	1	0	9	0.6
CCUM	Cumaceans		o	o	õ	0	0	0	õ	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	1	0	2	2	0	0	0	0	3	0	0	1	0	1	10	0.7
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
BOTH	Bivalves		1	1	0	0	0	0	0	1	6	0	0	0	0	2	0	11	0.7
GUIH	Gastropous		1	1	1	2	2	3	0	2		0	0	0	2		0	16	1.1
EHOI	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	0	1	0	1	0	3	1	0	0	0	1	7	0.5
POTH	Polychaetes		1	ō	Ő	ō	1	1	Ő	0	1	0	3	0	0	ō	0	7	0.5
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			67	67	38	100	74	33	66	56	90	65	65	51	90	97	57	1016	67.7

MI July 2001

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	2	5	6	7	8	9	10	12	13	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae	0.75	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
BIVALV	ES Autholitics bitumes	SIZE					0		0	0	0				-	
ВАВ	Arthritica difurca	<2	0	0	0	0	0	2	0	0	0	0	0	0	0	0.6
		Total	0	1	1	1	0	2	0	0	0	1	0	1	7	0.6
BAS	Austrovenus stutchburvi	<5	1	1	1	0	1	0	0	0	2	1	2	0	9	0.8
_	····,	>5	1	0	0	2	2	3	0	2	1	2	2	1	16	1.3
		Total	2	1	1	2	3	3	0	2	3	3	4	1	25	2.1
BML	Macamona liliana	<5	0	0	2	0	0	0	0	0	0	0	0	0	2	0.2
		5-15	0	0	1	1	1	0	0	0	1	2	0	1	7	0.6
		>15 Tatal	2	2	3	2	1	0	2	3	2	1	2	1	21	1.8
RNH	Nucula hartviaiana	Total	2	2	0	3	2	1	2	3	3	3	2	2	30	2.5
DIVIT	Nucula nativigiana	>2	0	0	0	0	0	0	0	0	1	1	0	0	2	0.2
		Total	0	0	0	1	0	1	0	0	1	1	0	0	4	0.3
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5 Tatal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANS	Total	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
COMAC	Colurostylis lemurum		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
GASTR	OPODS			Ŭ	Ŭ	•	Ŭ	Ŭ		Ŭ	Ŭ	Ŭ			•	•
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	1	0	0	0	0	2	1	2	0	6	0.5
OTHER																
OAN	Anthopleura aureoradiata		0	0	2	0	2	0	0	0	0	1	0	0	5	0.4
POLYCH	IAETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	1	1	0	0	2	0.2
PAGL	Aglaophamus sp.		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
PAO	Aonides oxycephala		32	44	46	44	19	116	66	41	43	56	45	62	614	51.2
PAR	Aricidea sp. Roludorida (Roccordia surtis)		0	0	0	1	0	0	0	0	0	0	0	1	0	0.0
PCOS	Cossura sp		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
PHF	Capitellidae (Heteromastus f	iliformis)	6	1	0	3	0	0	1	1	0	1	1	1	15	1.3
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae Orbinio popillogo		2	1	1	1	0	3	5	2	1	6	1	2	25	2.1
POP	Paraonidae		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
NON IN	DICATOR SPECIES		Ť	۲, T	Ľ			L _	۲, T	۲, T	۲, T	Ĕ	L _	۲, T		
CAMPH	Amphipods		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
CCRAB	Crabs		0	0	0	0	0	1	2	0	0	0	0	1	4	0.3
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		1	1	1	4	5	0	0	0	0	1	1	0	14	1.2
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Snrimps/Mysids		1	0	0	0	0	0	0	0		0	0	0	2	0.2
вотн	Bivalves		0	0	0	0	0	0	0	0	0	1	0	0	1	0.0
GOTH	Gastropods		1	0	1	0	o	0	1	0	1	1	0	0	5	0.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		2	0	0	1	0	0	2	0	1	3	1	1	11	0.9
POTH	Polychaetes		1	0	0	0	0	0	3	0	1	0	1	0	6	0.5
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
	riaiworms Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			50	51	59	64	33	127	83	49	59	80	59	73	787	65.6

MI October 2001

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	2	4	5	6	8	9	10	11	12	13	14	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	IES	SIZE													-	
BAB	Arthritica bifurca	<2	0	0	0	0	0	0	0	0	1	0	3	4	8	0.7
		Total	0	0	1	0	0	0	0	0	1	0	4	4	10	0.8
BAS	Austrovenus stutchburvi	<5	0	0	2	1	0	1	2	0	0	0	1	3	10	0.8
		>5	0	2	3	0	1	3	4	1	1	1	0	4	20	1.7
		Total	0	2	5	1	1	4	6	1	1	1	1	7	30	2.5
BML	Macamona liliana	<5	1	0	0	1	0	0	0	0	0	0	0	0	2	0.2
		5-15	0	1	1	1	0	0	2	0	0	1	0	1	7	0.6
		>15	1	2	2	4	1	2	2	1	2	3	2	2	24	2.0
	Nuquia hartuigiana	I otal	2	3	3	6	1	2	4	1	2	4	2	3	33	2.8
	Nucula hanvigiana	~2	1	0	0	0	0	0	0	0	3	0	0	0	4	0.0
		Total	1	o	0	0	o	o	0	0	3	0	o	0	4	0.3
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5 Tatal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	FANS	TOLAI	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCI	Colurostylis lemurum		1	0	0	0	1	0	0	4	1	1	1	0	9	0.8
GASTR	OPODS				Ű	Ű									-	
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		1	0	1	1	1	2	0	2	3	0	2	1	14	1.2
OTHER																
OAN	Anthopleura aureoradiata		0	2	2	0	1	0	1	1	1	1	0	1	10	0.8
POLYCH	AETES														-	
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAGL	Agiaopnamus sp.		0	54	22	20	55	10	45	24	0	71	0	64	0 611	0.0
PAR	Aricidea sp.		02	0	0	0	0	49	43	0	0	0	0	04	0	0.0
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		1	1	0	0	0	0	0	0	0	0	0	0	2	0.2
PGLY	Glycera sp.	ilifo una ia)	0	0	1	0	0	1	1	1	0	0	0	0	4	0.3
	Magelona dakini	morms)	1	0	0	0	0	0	0	0	0	0	1	0	2	0.3
PNIC	Nereidae		0	o	2	1	1	1	1	0	5	1	1	0	13	1.1
POP	Orbinia papillosa		0	1	0	0	0	0	1	0	0	0	1	0	3	0.3
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON INI	DICATOR SPECIES															
CAMPH	Amphipods		1	0	0	0	0	1	0	1	0	2	0	0	5	0.4
CCRAB	Crabs		0	0	0	0	1	0	0	1	1	1	0	1	5	0.4
CLOM	Isonods		0	0	0	2	0	0	0	0	2	0	0	1	5	0.0
COST	Ostracods		0	o	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	1	0	1	1	0	2	1	2	0	0	0	8	0.7
СОТН	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GOTH	Gastropods		0	1	0	0	1	0	1	0	2	1	3	0	9	0.8
EFEZ	rellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Nemerteans		0	1	1	0	1	0	1	0	0	0	1	1	6	0.0
POTH	Polychaetes		0	1	1	ō	1	1	0	1	0	2	1	0	8	0.7
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TAL			1 / 1	0/	50	42	00	101	0.3	38	1 Ö/	80	1 /9	05	/95	00.3

MI January 2002

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	2	3	5	6	8	9	10	12	13	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		1	4	2	0	5	7	3	4	3	3	0	4	36	3.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE														
BAB	Arthritica bifurca	<2	0	0	1	1	2	0	1	1	1	0	2	1	10	0.8
		>2 Total	0	0	1	1	2	0	1	1	1	0	2	1	10	0.0
BAS	Austrovenus stutchburvi	10lai	0	1	0	0	2	0	0	3	1	0	2	0	6	0.0
DAG	Austrovenus statenburyr	>5	1	3	0	1	0	1	0	0	0	1	0	3	10	0.8
		Total	1	4	0	1	1	1	0	3	1	1	0	3	16	1.3
BML	Macamona liliana	<5	0	0	0	0	1	0	0	0	0	1	0	2	4	0.3
		5-15	1	1	1	1	0	0	2	1	0	0	0	1	8	0.7
		>15	1	3	2	1	1	3	2	2	2	2	1	4	24	2.0
		Total	2	4	3	2	2	3	4	3	2	3	1	7	36	3.0
BNH	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	D //: / //	l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
вра	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15 \\15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHI	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DITIE		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANS															
CCL	Colurostylis lemurum		0	0	0	1	2	0	0	0	0	2	0	0	5	0.4
GASTR	OPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	1	0	0	0	1	0	2	0.2
OTHER																
OAN	Anthopleura aureoradiata		0	1	1	1	0	0	2	0	1	0	0	2	8	0.7
POLYCH	IAETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	1	0	4	0	1	0	6	0.5
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Aonides oxycepnaia		26	25	62	38	54	48	10	39	96	53	25	74	550	45.8
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	1	0	0	0	1	0.0
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	0	0	2	0	0	1	0	0	0	0	1	4	0.3
PHF	Capitellidae (Heteromastus f	iliformis)	0	0	0	1	1	6	2	2	0	1	0	1	14	1.2
PMD	Magelona dakini		0	0	0	0	1	0	0	0	0	0	1	0	2	0.2
PNIC	Nereidae		1	1	1	0	1	0	1	1	2	0	1	1	10	0.8
	Orbinia papiliosa Paraopidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
САМРН	Amphipods		2	3	3	1	3	4	4	0	0	4	2	0	26	22
CCRAB	Crabs		1	ō	1	0	0	0	0	ō	ō	0	0	ō	2	0.2
ссим	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves			0		0	0	0		0		0	1	0	5	0.4
GUTH FFF7	Gastropous Fellester zeelendiee			0	0	0	0		0	0	0	0	2		9	0.8
FHO	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONFM	Nemerteans		1	2	0	0	0	1	2	0	0	0	1	2	9	0.8
POTH	Polychaetes		0	0	Ő	Ő	Ő	0	0	Ő	Ő	Ő	0	0	0	0.0
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			37	44	76	49	72	71	33	54	112	68	38	97	751	62.6

MI April 2002

1					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	2	3	4	6	7	8	9	11	12	13	14	TOTAL	MEAN
AMPHIP	PODS															
ACOR	Corophiidae		0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae	0175	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	I:S	SIZE	0	0		0	0		0		0	-	0	0	-	
ВАВ	Arthritica difurca	<2	2	0	1	2	0	0	0	0	0	0	0	0	2	0.6
		Total	3	0	2	2	0	0	0	1	0	1	0	0	9	0.8
BAS	Austrovenus stutchburyi	<5	3	1	1	2	1	7	2	0	4	8	6	3	38	3.2
		>5	0	0	0	0	0	0	0	0	1	2	0	1	4	0.3
		Total	3	1	1	2	1	7	2	0	5	10	6	4	42	3.5
BML	Macamona liliana	<5	0	0	0	1	0	0	0	1	2	0	0	1	5	0.4
		5-15	1	0	0	1	0	0	0	0	1	0	1	0	4	0.3
		>15 Total	1	0	2	2	2	2	3	2	3	2	1	2	21	1.8
BNH	Nucula hartvigiana	10141	2	0	2	4	2	2	0	0	0	2	2	0	30	0.3
DIVIT	Nucula nartvigiana	>2	0	0	0	0	o	o	0	0	0	0	0	0	0 0	0.0
		Total	0	0	0	0	0	0	0	0	0	1	2	0	3	0.3
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	FANS	TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CCI	Colurostylis lemurum		0	0	0	0	1	1	0	0	0	0	2	1	5	0.4
GASTR	OPODS			0	0	•	· ·	-		Ŭ	Ŭ		-	· ·	-	•
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																
OAN	Anthopleura aureoradiata		0	0	0	1	0	0	3	1	1	0	0	0	6	0.5
POLYCH	AETES															
PAA	Aquilaspio aucklandica		0	0	0	0	0	0	1	0	0	0	1	0	2	0.2
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		50	41	52	35	27	68	41	33	38	28	57	42	512	42.7
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura sp		0	0	0	0	0	0	0	0	0	0	0	0	0	0.2
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	ů 0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		0	1	0	0	1	0	2	0	0	0	0	0	4	0.3
PHF	Capitellidae (Heteromastus fi	iliformis)	0	0	1	1	0	3	0	0	0	0	1	1	7	0.6
PMD	Magelona dakini		1	1	0	1	0	0	0	0	0	0	1	0	4	0.3
PNIC	Nereidae		2	2	1	0	0	3	2	3	1	1	3	0	18	1.5
	Orbinia papillosa Paraopidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			0	0	0	0		Ū				0			v	0.0
CAMPH	Amphipods		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
CCRAB	Crabs		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	1	0	0	0	1	0	0	3	0	0	0	5	0.4
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		1	1	0	0	0	0	1	1	2	0	1	0	7	0.6
	Other Crustaceans		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
GOTH	Gastropods		0	4	0	1	0	2 0	0	0	1	3	0	0	5	0.4
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	ō	0	0	ō	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	2	1	0	0	0	1	0	2	0	1	1	8	0.7
POTH	Polychaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	2	0	2	0.2
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
	<i>⊑uwarasia</i> Misc Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			63	54	62	49	33	88	58	43	59	47	79	53	688	57.3

KB April 2001

					COR	E NUN	IBER												
INDICAT	OR SPECIES		1	2	3	4	5	6	7	8	9	11	13	14	16	17	20	TOTAL	MEAN
AMPHIP	PODS																	ĺ	
ACOR	Corophiidae		0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE										10		10			1.0		
BAB	Arthritica bifurca	<2	2	6	6	3	24	1	1	14	2	12	2	13	0	4	12	102	6.8
		>2 Total	2	6	6	3	24	1	1	14	2	12	2	13	0	4	12	102	6.8
BAS	Austrovenus stutchburvi	-5	24	25	21	18	16	21	31	40	41	45	34	40	69	83	25	533	35.5
D/ (O	nusi ovonus statonbaryr	>5	4	10	3	1	2	5	2	6	2	10	0	1	4	12	0	62	4.1
		Total	28	35	24	19	18	26	33	46	43	55	34	41	73	95	25	595	39.7
BML	Macamona liliana	<5	0	0	0	0	0	0	0	1	0	0	0	1	0	2	0	4	0.3
		5-15	0	0	0	1	0	0	0	1	0	0	1	1	1	1	0	6	0.4
		>15	2	1	2	1	1	4	3	1	4	3	2	2	3	3	3	35	2.3
		Total	2	1	2	2	1	4	3	3	4	3	3	4	4	6	3	45	3.0
BNH	Nucula hartvigiana	<2	2	2	3	7	2	3	1	3	2	1	1	1	3	7	0	38	2.5
		>2	1	1	0	3	1	1	0	3	3	0	1	0	0	2	1	17	1.1
		Total	3	3	3	10	3	4	1	6	5	1	2	1	3	9	1	55	3.7
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHI	Theora lubrica	10tai	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0.0
DITIL	Theora lubrica	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
CUMAC	EANS											-			-				
CCL	Colurostylis lemurum		0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0.1
GASTRO	OPODS																		
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																			
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	IAETES																		
PAA	Aquilaspio aucklandica		3	3	4	11	8	8	7	11	2	8	4	6	8	3	7	93	6.2
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		1	5	0	2	4	7	3	0	0	0	1	4	0	0	2	29	1.9
PAR	Aricidea sp. Beluderide (Besserdie surtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura en		0	0	2	0	0	0	0	0	0	0	0	2	4	0	0	0	0.9
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	<i>Glycera</i> sp.		2	1	1	1	5	1	0	0	0	3	2	2	1	1	1	21	1.4
PHF	Capitellidae (Heteromastus	filiformis)	3	0	4	5	16	5	3	9	3	6	7	6	16	7	8	98	6.5
PMD	Magelona dakini		1	3	0	3	1	0	2	8	0	2	0	2	4	0	1	27	1.8
PNIC	Nereidae		1	2	0	2	1	0	0	0	0	1	2	3	1	0	3	16	1.1
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	DICATOR SPECIES		0	0	0	0	0	0	0	0	0		0	0	0	0	0	-	
CAMPH	Ampnipoas		0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0.0
CCLIM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		1	2	2	0	2	2	0	0	0	1	1	0	1	0	0	12	0.8
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		1	2	3	1	7	3	4	6	2	8	1	3	3	1	9	54	3.6
GOTH	Gastropods		1	0	0	1	0	1	2	1	1	1	0	1	3	0	0	12	0.8
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH	Polychaetes		0	1	1	2	6	2	3	1	1	2	1	2	0	0	0	20	1.3
	Flatworm		0	∠ ∩	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.9
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0.0
TOTAL			50	67	54	64	96	66	66	106	63	104	61	94	124	127	72	1214	80.9

	CORE NUNBER															
INDICAT	OR SPECIES		1	4	5	6	7	8	9	10	11	12	13	14	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	3	0	0	0	0	0	0	0	3	0.3
BIVALV	ES	SIZE														
BAB	Arthritica bifurca	<2	5	9	1	1	1	0	1	1	2	5	1	1	28	2.3
		>2 Tatal	1	0	0	0	0	0	1	0	0	0	0	0	2	0.2
BAC	Austravanus stutabburgi	Total	10	9	10	1	6	0	2	7	10	2 21	14	10	30	2.0
BAS	Austrovenus stutchburyi	<0 \5	7	2	10	1	13	22	23	2	13	21	14	10	100	6.0
		Total	, 19	9	14	15	19	31	30	9	25	24	19	14	228	19.0
BML	Macamona liliana	<5	0	1	0	1	2	0	0	0	0	0	0	0	4	0.3
		5-15	0	0	0	0	0	0	0	1	1	0	0	1	3	0.3
		>15	2	2	2	3	2	2	4	2	0	3	2	2	26	2.2
		Total	2	3	2	4	4	2	4	3	1	3	2	3	33	2.8
BNH	Nucula hartvigiana	<2	0	2	0	0	1	0	6	1	0	1	2	0	13	1.1
		>2	0	5	0	2	4	4	0	1	3	1	1	0	21	1.8
	D //: / //	Iotal	0	/	0	2	5	4	6	2	3	2	3	0	34	2.8
вра	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	o	o	o	o	o	o	0	0	ů 0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMACIEANS																
CCL Colurostylis lemurum			1	1	0	0	0	0	0	0	0	0	0	0	2	0.2
GASTROPODS																
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER															_	
OAN DOL VOI	Anthopleura aureoradiata		0	0	2	0	1	0	1	0	1	1	0	1	1	0.6
			2	7	2	2	2	0	0	5	0	4	5	5	44	27
PAGI	Aquilaspio auckiariuica Aglaophamus sp		0	0	2	2	2	0	0	0	9	4	0	0	- 44	0.0
PAO	Agiaophamas sp. Aonides oxycephala		2	3	3	3	0	1	0	2	5	2	1	0	22	1.8
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Polydorids (Boccardia syrtis)		0	2	1	0	1	0	1	0	1	2	1	1	10	0.8
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		2	0	1	0	0	0	2	1	0	1	0	1	8	0.7
	Glycera sp.	liformia	2	2	10	15	11	1	10	0	01	1	2	0	10	0.8
	Magelona dakini	liioinnis)	9	14	10	0	0	23	12	0	1	24	0	3	8	0.7
PNIC	Nereidae		1	1	0	0	2	1	1	1	0	2	0	1	10	0.8
POP	Orbinia papillosa	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON IN	DICATOR SPECIES															
CAMPH	Amphipods		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
CCRAB	Crabs		0	0	1	0	0	0	1	0	0	0	0	0	2	0.2
CCOM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	2	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	1	0	1	0	2	0.2
CSHR	Shrimps/Mysids		1	0 0	1	0	0	0	0	õ	0	1	2	0	5	0.4
COTH	Other Crustaceans		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BOTH	30TH Bivalves			0	2	2	1	0	0	0	0	0	0	1	6	0.5
GOTH	Gastropods		0	1	1	1	0	2	0	0	2	1	1	2	11	0.9
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Nemerteans		0	0	0	0	0		0	0	0	0	0	0		0.1
	Oligochaetes		5	1	0	0	1	0	2	0	0	0	0	0	9	0.0
OFLAT	Flatworm		o	0	ō	ŏ	0	ō	0	ō	ō	ō	ō	ō	o	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			54	63	43	46	52	66	65	32	79	73	44	43	660	55.0

KB July 2001

KB October 2001

					COR	E NUN	BER									
INDICAT	OR SPECIES		3	5	6	7	8	9	10	11	12	13	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		5	3	13	20	11	12	11	0	2	3	4	3	87	7.3
	Phoxocephalidae	SIZE	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
BAR	Arthritica bifurca	SIZE	4	0	0	0	1	0	2	1	0	1	1	5	15	13
DAD	Altillica Diluica	>2	4	0	0	0	0	0	2	0	0	0	0	0	0	0.0
		Total	4	0	0	0	1	0	2	1	0	1	1	5	15	1.3
BAS	Austrovenus stutchburyi	<5	5	13	7	3	6	5	1	3	10	10	3	6	72	6.0
		>5	2	8	7	7	13	2	3	6	4	3	3	1	59	4.9
		Total	7	21	14	10	19	7	4	9	14	13	6	7	131	10.9
BML	Macamona liliana	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	1	0	0	0	0	1	0	0	1	0	0	3	0.3
		>15 Total	1	3	3	1	4	2	1	1	3	2	2	1	24	2.0
RNH	Nucula hartviaiana	10181	0	4	3	0	4	2	2	1	3	3	2	0	- 21	2.3
DINIT	Nucula natvigiana	>2	0	3	1	3	0	2	0	1	2	4	3	4	23	1.9
		Total	0	3	1	3	0	2	0	2	2	4	3	4	24	2.0
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANG	Total	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
CCI Colurostylis lemurum			1	0	0	0	0	0	0	0	0	0	0	1	2	0.2
GASTROPODS			· ·	-		-		-		-	-		-		-	
GCA	Cominella adspera		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	OTHER															
OAN Anthopleura aureoradiata			0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
POLYCHAETES																
PAA	Aquilaspio aucklandica		5	5	2	0	1	3	5	1	0	0	2	1	25	2.1
PAGL	Aglaophamus sp.		0	0	0	0	0	1	1	0	0	0	0	0	2	0.2
	Aonides oxycepnaia		0	0	3	0	0	0	0	0	0	0	0	0	4	0.3
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	1	1	0	0	0	2	0	4	0.3
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	3	0	0	3	0.3
PGLY	Glycera sp.		2	2	1	1	1	1	1	3	0	0	0	4	16	1.3
PHF	Capitellidae (Heteromastus fil	liformis)	32	19	24	9	16	8	20	11	26	14	26	21	226	18.8
PNIC	Magelona dakini Nereidae		2	0	2	2	0	0	1	3	1	2	2	0	13	0.9
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON IND	ICATOR SPECIES															
CAMPH	Amphipods		0	0	1	0	1	0	0	0	0	0	0	0	2	0.2
CCRAB	Crabs		0	0	0	0	0	1	1	0	0	1	0	0	3	0.3
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	31 Ostracous HB Shrimps/Mysids			3	5	0	1	1	3	2	1	2	1	2	29	2.4
сотн	OTH Other Crustaceans			0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	BOTH Bivalves			1	0	1	0	0	1	1	0	0	0	0	5	0.4
GOTH	TH Gastropods		1	0	1	0	2	1	9	0	0	0	1	0	15	1.3
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH	Polychaetes		0	1	0	0	0	1	8	0	0	0	0	1	11	0.9
OOLIG	Oligochaetes		4	0	0	Ő	0	0	0	o	0	0	0	0	4	0.3
OFLAT	Flatworm		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			74	63	71	49	59	41	72	35	50	49	51	50	664	55.3

KB January 2002

					COR	E NUN	BER									
INDICAT	OR SPECIES		1	2	3	4	5	6	8	11	12	13	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		10	25	4	23	5	7	9	1	8	7	4	6	109	9.1
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE	_												40	4.0
BAB	Arthritica bifurca	<2	5	2	1	0	0	2	4	0	1	1	2	1	19	1.6
		Total	5	2	1	0	0	2	4	0	1	1	3	1	20	1.7
BAS	Austrovenus stutchburyi	<5	4	2	4	0	5	4	4	2	3	1	3	2	34	2.8
		>5	4	1	1	3	2	9	2	3	3	5	4	0	37	3.1
		Total	8	3	5	3	7	13	6	5	6	6	7	2	71	5.9
BML	Macamona liliana	<5	0	0	1	0	1	1	0	0	0	0	0	0	3	0.3
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	2	3	2	3	3	3	4	2	3	3	1	3	32	2.7
BNH	Nucula hartviniana	10tai	2	0	0	0	4	1	4	2	0	0	1	0	4	0.3
2	naoana nantrigiana	>2	0	0	1	0	0	1	0	0	0	0	0	1	3	0.3
		Total	0	0	1	0	0	2	2	0	0	0	1	1	7	0.6
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTLU	Theory lubrice	l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DINL	Theora lubrica	<0 >5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANS	1														
CCL Colurostylis lemurum			0	2	0	0	0	0	0	0	0	0	0	0	2	0.2
GASTRO	()PODS															
GCA	GCA Cominella adspera		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
GNHE	GNHE Notoacmea sp.		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
OTHER															-	
		0	0	0	0	-	0	0	-	0	0	0	0	2	0.2	
		2	1	3	5	5	2	0	1	0	0	0	0	10	1.6	
PAGI	Aqlaophamus sp		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	1	0	2	3	1	0	0	0	0	0	1	8	0.7
PAR	Aricidea sp.		0	2	0	0	0	0	0	0	0	0	0	0	2	0.2
PBOC	Polydorids (Boccardia syrtis)		2	1	1	1	0	1	0	0	0	3	0	1	10	0.8
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Eucnone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glvcera sp.		0	2	1	2	3	2	0	0	1	2	2	2	17	1.4
PHF	 Polydorids (Boccardia syrtis) Cossura sp. Euchone sp. Goniada sp. Glycera sp. Capitellidae (Heteromastus filiformis) Magelona dakini 		33	14	17	10	12	14	38	23	13	6	7	35	222	18.5
PMD	 Capitellidae (Heteromastus filiformis) Magelona dakini 		1	1	0	0	0	1	1	0	1	0	0	1	6	0.5
PNIC	Nereidae		0	3	1	0	0	3	1	0	1	0	1	0	10	0.8
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON IN			0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
	Amphipode		2	1	1	0	0	1	1	0	1	1	0	1	9	0.8
CCRAB	Crabs		1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
ссим	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		2	0	0	3	1	0	3	1	0	0	1	0	11	0.9
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	CSHR Shrimps/Mysids			0	0	1	0	0	0	0	0	0	0	0	1	0.1
	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GOTH	Gastropods		0	0	1	0	0	0	2	0	0	2	1	0	6	0.5
EFEZ	EZ Fellaster zealandiae		0	0	0	0	0	Ő	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	1	0	0	0	1	0	0	0	0	0	0	2	0.2
POTH	Polychaetes		0	2	0	0	1	0	0	0	1	0	1	1	6	0.5
	Oligochaetes		4	0	2	0	0	0	0	1	0	0	0	0	7	0.6
OFLAT	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			78	70	46	57	47	59	76	40	42	39	37	60	651	54.3

KB April 2002

					COR	E NUN	BER									
INDICAT	OR SPECIES		1	2	4	5	6	8	10	11	12	13	14	15	TOTAL	MEAN
AMPHIP	PODS															
ACOR	Corophiidae		3	0	2	0	3	0	3	35	1	3	1	3	54	4.5
APHOX	Phoxocephalidae	0175	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE												_		
BAB	Arthritica difurca	<2	0	8	2	0	2	1	0	2	3	0	3	0	29	2.4
		Total	0	8	2	1	2	2	0	2	4	0	3	7	31	2.6
BAS	Austrovenus stutchburvi	<5	23	9	15	6	19	6	8	10	4	11	5	7	123	10.3
	·····,	>5	6	4	2	4	4	5	4	5	3	5	7	3	52	4.3
		Total	29	13	17	10	23	11	12	15	7	16	12	10	175	14.6
BML	Macamona liliana	<5	1	0	1	0	1	0	0	2	0	1	1	0	7	0.6
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	2	2	1	0	2	1	3	3	1	1	2	3	20	1.7
BNH	Nucula hartviniana	10tai	3	2	1	0	0	1	1	1	0	0	0	0	7	0.6
Divit	Nuoula hartingiana	>2	0	3	1	0	0	4	1	4	0	0	6	1	20	1.7
		Total	3	3	2	0	0	5	2	5	0	0	6	1	27	2.3
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTLU	Theore lubrice	l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DINL	Theora lubrica	<0 >5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
		Total	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
CUMAC	EANS															
CCL Colurostylis lemurum			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GASTROPODS																
GCA	Cominella adspera		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
GNHE	E Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER															-	
		0	0	0	0	0	0	0	0	0	0	0	0	U	0.0	
			0	5	3	1	4	1	2	1	3	1	2	0	23	1 9
PAGI	Aqlaonhamus so		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	1	0	1	4	3	2	1	0	1	1	2	16	1.3
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Polydorids (Boccardia syrtis)		3	0	0	1	6	3	0	1	0	1	2	1	18	1.5
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Gunada sp. Glycera sp.		1	0	1	1	1	2	0	1	2	0	2	1	12	1.0
PHF	ODS Corophilidae Phoxocephalidae ES SIZ Arthritica bifurca <4		12	21	11	17	7	20	17	7	13	23	26	14	188	15.7
PMD	Magelona dakini		3	4	2	3	3	3	1	2	4	5	2	4	36	3.0
PNIC	Corophildae Phoxocephalidae ES SIZ Arthritica bifurca <2		1	1	0	2	0	5	0	3	4	2	1	0	19	1.6
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Amphinede		0	0	1	0	0	0	0	0	0	0	0	0	4	0.1
CCRAR	Crabs		0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		3	0	1	0	1	0	1	1	0	1	0	1	9	0.8
COST	Ostracods		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
CSHR	Shrimps/Mysids		0	3	5	1	7	8	4	2	0	0	0	1	31	2.6
COTH	OTH Other Crustaceans			0	0	0	0	0	0	0	0	0	0	0	0	0.0
GOTH	Gastropods		13	5	4	0	9	3	4	3	1	2		4	55	4.6
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	0	0	1	0	0	1	1	0	3	0.3
POTH	Polychaetes		1	1	1	1	1	1	0	1	1	0	0	4	12	1.0
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
OFLAT	Flatworms		1	0	1	0	0	0	0	0	0	0	0	0	2	0.2
OTHER	Luwarusia Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			76	67	56	46	74	69	53	86	42	57	64	56	746	62.2

Appendix 2 - Whaingaroa Harbour species/taxonomic group abundances

TU April 2001

					COR	E NUN	BER												
INDICA	OR SPECIES		1	2	3	4	6	8	11	12	13	14	15	17	18	19	20	TOTAL	MEAN
AMPHIF	ODS																	1	
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
BIVALV	ES	SIZE																	
BAB	Arthritica bifurca	<2	10	0	11	3	1	2	0	4	0	0	1	0	0	1	29	62	4.1
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	3	0.2
BAC	Austrovopus stutoburri	Total	10	0		3	16	2	11	4	0	16	14	10	0	4	29	00 107	4.3
BAS	Austrovenus stutchburyi	<5 >5	17	20	12	12	22	21	20	8 52	22	24	14	10	22	22	21	127	8.3 29.7
		Total	23	20	43	37	39	36	49	60	38	40	14	51	38	22	26	557	37.1
BMI	Macamona liliana	-5	1	5		2	0	2		1	0	1	3	1	0	23	1	22	15
DIVIE	madamona mana	5-15	3	1	0	1	0	0	1	0	0	0	0	0	0	0	0	6	0.4
		>15	1	2	0	4	2	2	3	2	2	3	3	2	4	5	2	37	2.5
		Total	5	8	0	7	2	4	7	3	2	4	6	3	4	7	3	65	4.3
BNH	Nucula hartvigiana	<2	4	10	16	26	6	5	2	1	8	7	2	6	3	7	3	106	7.1
		>2	6	1	3	13	6	3	21	17	24	26	10	17	13	9	11	180	12.0
		Total	10	11	19	39	12	8	23	18	32	33	12	23	16	16	14	286	19.1
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
011110	-410	Iotai	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
CUMAC	Calumatulia la munum	0	0	1	0	-	0	1	1	-	0	4	0	0	0	0	•	0.0	
			0	0	'	0	1	0	-		-	3	1	0	0	0	0	9	0.0
GASTR	Cominalla adapara		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	GNHE Notoacmea sp		4	0	8	11	7	4	10	5	7	10	3	2	18	14	15	118	7.9
	Notoacinea sp.		4	0	0		'	4	10	5		10	3	2	10	14	15	110	7.5
	Anthonleura aureoradiata		3	6	5	0	3	2	7	15	3	4	17	4	9	3	7	88	59
POLYCI	AFTES			Ŭ		0	0	-	· ·	10	Ŭ	-		-		0	,		0.0
PAA Aquilaspio aucklandica			33	15	23	13	10	4	25	13	24	32	22	12	13	35	57	331	22.1
PAGL	PAGL Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	PAO Aonides oxycephala		0	0	0	0	7	0	0	16	33	12	0	0	0	0	1	69	4.6
PAR	PAR Aricidea sp.		0	0	3	0	0	0	0	0	0	0	0	0	0	1	0	4	0.3
PBOC	Polydorids (Boccardia syrtis))	0	0	0	0	0	0	0	1	0	0	0	0	4	0	0	5	0.3
PCOS	Cossura sp.		0	1	0	0	1	0	0	3	0	0	0	0	0	0	3	8	0.5
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
PGLY	Glycera sp.		0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	2	0.1
PHF	Capitellidae (Heteromastus f	filiformis)	15	6	4	1	2	3	10	5	5	11	5	3	4	5	9	88	5.9
	Magelona dakini Naraidaa		0	1	0	0	0	0	0	0	0	0	1	1	1	0	0	51	0.1
			0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
NON IN					Ű	Ű	Ű	ů	Ů		ů	Ű	Ű		Ű	Ű	Ű		•
CAMPH	Amphipods		3	1	8	2	0	1	22	0	2	9	0	0	1	0	3	52	3.5
CCRAB	Crabs		1	1	0	0	1	0	5	1	1	3	0	1	1	2	1	18	1.2
ссим	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	2	0.1
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
BOTH	BOTH Bivalves		2	0	1	0	0	3	1	0	1	1	0	0	1	1	2	13	0.9
GOTH	Gastropods		0		6	0	6		2	0		5	1	2	2	0	2	29	1.9
	reilaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0.0
	Nemerteans		1	0	0	1	0	0	1	1	0	0	0	2	0	0	2	8	0.0
POTH	Polychaetes		1	0	0	0	1	0	2	0	2	0	1	0	0	3	5	15	1.0
OOLIG	Oligochaetes		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0.1
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			118	83	145	119	97	72	170	151	154	170	84	104	112	126	186	1891	157.6
TU October 2001

					COR		BER									
INDICAT	OR SPECIES		1	2	3	4	5	6	8	9	10	11	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae	0175	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES Arthritica hiferra	SIZE	10	0	0	7	-	05	10		0	0	00	10	140	11.0
ВАВ	Arthritica difurca	<2	18	8	3	0	5	35	18	4	3	0	32	10	143	4.1
		Total	20	8	3	15	5	62	20	5	4	0	40	10	192	16.0
BAS	Austrovenus stutchburyi	<5	14	3	12	13	18	17	20	24	23	22	32	27	225	18.8
		>5	3	15	12	54	31	52	27	30	39	28	33	30	354	29.5
		Total	17	18	24	67	49	69	47	54	62	50	65	57	579	48.3
BML	Macamona liliana	<5	2	1	0	0	2	0	0	0	1	3	0	0	9	0.8
		5-15	1	1	1	0	2	3	2	1	2	0	0	3	16	1.3
		>15 Total	2	2	2	1	4	3	2	1	4	4	2	4	40	3.3
BNH	Nucula hartvioiana	<2	5	3	4	1	3	2	3	6	4	1	6	8	46	3.8
	3	>2	11	3	21	16	18	25	8	24	21	8	20	0	175	14.6
		Total	16	6	25	17	21	27	11	30	25	9	26	8	221	18.4
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
втні	Theora lubrica	101a1	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
DITIL	Theora lubrica	>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
CUMAC	EANS	1														
CCL	Colurostylis lemurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GASTRO	OPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		2	0	7	2	6	8	5	11	2	11	11	4	69	5.8
OTHER	Anthoniours surroundiate		0	0	0	0	0	7	4	6	-	4	0	- 1	50	4.0
			2	2	3	8	8	/	4	0	5	4	8	1	00	4.0
	Aquilaspio aucklandica		16	63	25	9	22	39	10	25	28	25	22	9	293	24.4
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	2	12	0	0	0	0	14	1.2
PAR	Aricidea sp.		0	1	0	0	0	0	0	0	0	2	0	0	3	0.3
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	1	0	0	0	1	0	0	0	2	0.2
PCOS	Cossura sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGF	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		2	1	1	1	1	2	0	1	3	2	4	0	18	1.5
PHF	Capitellidae (Heteromastus fil	liformis)	12	13	6	3	6	25	12	3	1	8	15	1	105	8.8
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		6	16	8	4	6	14	12	3	2	11	9	3	94	7.8
	Orbinia papillosa Paraopidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
				0	0		0	0	0	Ū		0		0	•	0.0
CAMPH	Amphipods		4	0	0	0	0	6	0	0	0	7	3	0	20	1.7
CCRAB	Crabs		1	5	1	0	2	3	4	0	1	4	4	4	29	2.4
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
СОТН	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
вотн	Bivalves		0	0	0	o	0	1	0	o	0	0	0	0	1	0.1
GOTH	OTH Bivalves OTH Gastropods			1	0	4	10	3	5	1	3	3	2	4	40	3.3
EFEZ	OTH Gastropods FEZ Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	HEZ Feilaster zealandiae HOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	DNEM Nemerteans			0	0	0	0	0	0	0	0	0	0	0	0	0.0
	POTH Polychaetes DOLIG Oligochaetes			9	0	1	0	19	2	0	5	0	0	3	68 0	5./
OFLAT	OOLIG Oligochaetes OFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	OFLAT Flatworms OEDW <i>Edwardsia</i>			0	0	0	0	0	0	Ő	0	0	0	0	0	0.0
OTHER	DEDW Edwardsia DTHER Misc. Other [chiton]			0	1	0	0	0	0	0	0	0	0	1	2	0.2
TOTAL			112	145	107	132	152	288	138	159	149	147	212	109	1850	154.2

TU April 2002

					COR	E NUN	BER									
INDICAT	OR SPECIES		1	2	3	4	5	6	7	8	10	11	12	14	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae Bhovooonholidoo		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
BIVAL VI	FILOXOCEPHAIldae	SIZE	0	0	0	0	0	0	0	-	0	0	0	0	-	0.1
BAB	Arthritica hifurca	-2	5	7	1	2	25	5	5	2	0	2	2	0	56	4.7
D/ (D		>2	1	1	0	1	6	0	0	0	0	1	0	0	10	0.8
		Total	6	8	1	3	31	5	5	2	0	3	2	0	66	5.5
BAS	Austrovenus stutchburyi	<5	6	8	4	8	7	15	7	14	3	15	9	6	102	8.5
		>5	21	28	30	39	46	26	18	39	20	34	16	24	341	28.4
		Total	27	36	34	47	53	41	25	53	23	49	25	30	443	36.9
BML	Macamona liliana	<5	3	1	0	0	4	2	1	4	0	7	3	1	26	2.2
		5-15	0	1	1	4	0	1	0	0	0	3	1	2	13	1.1
		>15	0	3	4	4	2	1	2	2	1	3	1	0	23	1.9
	Nuquia bortuigiono	Total	3	5	2	0	0	4	3	0	0	13	2	3	02	5.2 1.0
DIVIT	Nucula natvigiana	>2	0	15	44	36	37	25	43	26	16	17	17	27	303	25.3
		Total	0	15	46	37	41	27	52	29	16	17	19	27	326	27.2
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC		Iotai	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
COMACI	Colurostylis lemurum		0	0	1	1	0	0	0	0	0	1	0	0	3	0.3
GASTRO	PODS		Ŭ	Ŭ			Ŭ	Ů	Ŭ	Ŭ	0		Ŭ	Ŭ	, , , , , , , , , , , , , , , , , , ,	0.0
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		1	11	15	14	3	13	13	10	10	6	29	14	139	11.6
OTHER																
OAN	Anthopleura aureoradiata		3	3	2	7	8	1	1	4	2	5	3	1	40	3.3
POLYCH	IAETES															
PAA	Aquilaspio aucklandica		24	13	24	35	23	26	34	9	2	7	28	21	246	20.5
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Aonides oxycephala		0	0	2	3	1	1	0	2	1	13	0	0	23	1.9
PBOC	Polydorids (Roccardia syrtis)		2	0	0	1	1	0	0	0	0	1	2	1	8	0.0
PCOS	Cossura sp.		1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		1	1	1	1	1	1	0	2	0	0	0	0	8	0.7
PHF	Capitellidae (Heteromastus fi	iliformis)	7	7	4	3	6	10	4	3	0	0	14	7	65	5.4
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Nereidae Orbinia papillosa		4	3	4	2	0	3	0	0	0	3	2	3	25	2.1
PPAR	Paraonidae		o	o	0	0	0	0	0	o	0	0	0	0	0	0.0
NON INC	ICATOR SPECIES				-	-					-			-	-	
CAMPH	Amphipods		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
CCRAB	Crabs		2	0	3	0	5	1	1	0	0	2	4	3	6	0.5
CCUM	Cumaceans		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
СОТН	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	2	2	0.0
BOTH	Bivalves		0	0	0	2	0	0	0	0	0	o	0	Ó	2	0.2
GOTH	DTH Bivalves DTH Gastropods			4	7	10	9	6	6	6	2	4	7	5	68	5.7
EFEZ	OTH Gastropods FEZ Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	HEZ Fellaster zealandiae HOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	NEM Nemerteans			0	1	0	0	0	1	1	0	0	0	1	4	0.3
POTH	POTH Polychaetes			0	0	0	2	0	0	1	0	0	0	0	3	0.3
	DOLIG Oligochaetes DFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	OFLAT Flatworms OEDW <i>Edwardsia</i>			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	OEDW Edwardsia OTHER Misc. Other [chiton]				0	0	0	0	1	0	0	0	1	0	2	0.2
TOTAL			83	106	152	174	191	139	147	129	57	124	141	118	1546	128.8

HB April 2001

					COR		IBER												
INDICAT	OR SPECIES		1	2	3	4	5	7	9	10	12	14	16	17	18	19	20	TOTAL	MEAN
AMPHIP	PODS																	ĺ	
ACOR	Corophiidae		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae		0	0	0	1	1	1	0	1	1	0	1	0	1	2	0	9	0.6
BIVALV	ES	SIZE															_		
BAB	Arthritica bifurca	<2	1	4	1	0	8	1	0	0	4	1	4	0	0	0	0	24	1.6
		Total	1	4	1	0	8	1	0	0	4	1	4	0	0	0	6	30	2.0
BAS	Austrovenus stutchburvi	<5	2	1	4	0	2	8	2	6	5	0	9	12	15	4	2	72	4.8
		>5	0	0	0	1	0	2	0	3	0	0	2	0	7	1	0	16	1.1
		Total	2	1	4	1	2	10	2	9	5	0	11	12	22	5	2	88	5.9
BML	Macamona liliana	<5	6	2	3	4	0	1	2	1	0	4	3	8	6	1	4	45	3.0
		5-15	0	2	0	0	0	0	0	1	0	0	1	0	3	0	0	7	0.5
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DALL	Num da hant úniana	Iotai	6	4	3	4	0	1	2	2	0	4	4	8	9	1	4	52	3.5
ылн	Nucula nartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	.,	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	LANC	lotal	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
COMAC	Colurostulis lomurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GASTR			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	o	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
OTHER			-	-	-	-	-	-	-			-	-	-	-	-	-		-
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	IAETES																		
PAA	Aquilaspio aucklandica		4	2	1	2	4	1	0	0	1	1	3	3	7	0	5	34	2.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
PAR	Aricidea sp.		2	0	0	0	2	0	1	0	0	5	1	0	1	0	1	13	0.9
PBOC	Polydorids (Boccardia syrtis)		2	1	1	1	0	1	0	1	0	0	1	0	1	0	2	11	0.7
PCOS	Cossura sp.		0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
PGE	Coniada sp.		0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	3	0.0
PGLY	Glycera sp.		1	1	1	0	0	0	0	1	0	0	0	0	0	1	0	5	0.3
PHF	Capitellidae (Heteromastus	filiformis)	15	15	21	18	21	14	7	11	23	14	24	16	28	9	13	249	16.6
PMD	Magelona dakini	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		5	2	5	4	2	1	2	6	0	3	8	3	1	4	5	51	3.4
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON INI	DICATOR SPECIES																		
CAMPH	Amphipods		0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	2	0.1
CCHAB	Crabs		0	1	0	0	1	0	1	0	1	0	0	1	0	1	3	9	0.0
CISO	Isonods		0	4	0	1	0	1	7	0	1	0	0	0	0	0	0	14	0.9
COST	Ostracods		0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves		0	0	0	0	1	0	1	0	0	0	0	0	0	3	0	5	0.3
GOTH	Gastropods		0	0	0	0	1	0	0	3	1	0	0	0	0	0	0	5	0.3
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Ivernerteans		0	0	0	0	0	0	1	0	0	1	1	0	0	0	1	U e	0.0
	Oligochaetes		2	0	0	0	4	0	0	0	0		0	0	1		2	3	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		ō	Ő	0	ō	0	0	Ő	ō	Ő	Ő	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			40	36	38	34	47	31	26	35	38	30	58	43	73	29	44	602	50.2

HB October 2001

					COR	E NUN	BER									
INDICAT	OR SPECIES		1	2	3	4	5	6	7	8	9	11	12	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		2	5	3	0	1	1	7	0	1	0	1	1	22	1.8
BIVALV	ES	SIZE		4.0					10					10	74	
BAB	Arthritica bifurca	<2	1	10	21	5	2	0	10	0	4	3	0	18	74 0	6.2
		Total	1	10	21	5	2	0	10	0	4	3	0	18	74	6.2
BAS	Austrovenus stutchburyi	<5	6	9	7	15	2	23	15	19	16	24	10	32	178	14.8
		>5	0	0	0	0	0	0	2	1	0	2	0	0	5	0.4
		Total	6	9	7	15	2	23	17	20	16	26	10	32	183	15.3
BML	Macamona liliana	<5	1	3	0	0	0	0	3	0	0	0	1	2	10	0.8
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	1	3	0	0	0	0	3	0	0	0	1	2	10	0.0
BNH	Nucula hartviniana	10tai	1	0	0	0	0	0	1	0	0	0	0	2	2	0.0
2	naoana nantrigiana	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	0	0	0	0	0	1	0	0	0	0	0	2	0.2
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTU	Theory lubrice	l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DINL	Theora lubrica	<0 >5	0	0	0	2	0	0	0	0	0	0	0	0	2	0.2
		Total	1	0	0	2	0	0	1	0	0	0	0	0	4	0.3
CUMAC	EANS															
CCL	Colurostylis lemurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GASTRO	()PODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	A .// / // // // // // // // // // // //														-	
			0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
	Aquilaspio aucklandica		4	2	0	3	7	2	4	0	0	5	0	0	27	23
PAGI	Adlaophamus sp		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	0	0	2	1	0	1	0	1	0	0	0	5	0.4
PBOC	Polydorids (Boccardia syrtis)		1	0	1	1	0	1	0	0	2	2	0	0	8	0.7
PCOS	Cossura sp.		0	1	0	0	0	0	0	0	0	0	9	1	11	0.9
PEUC	Eucnone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Glvcera sp.		1	1	0	0	0	2	0	0	1	0	0	1	6	0.5
PHF	Capitellidae (Heteromastus fil	liformis)	11	16	13	27	10	7	13	17	13	11	12	16	166	13.8
PMD	Magelona dakini	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		2	6	4	1	0	0	6	1	6	2	1	1	30	2.5
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR			0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
	Amphipode		0	2	2	3	2	2	11	3	2	13	3	1	44	37
CCRAB	Crabs		1	0	1	1	0	1	0	1	1	1	4	1	12	1.0
ссим	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
вотн	Other Grustaceans Bivalves		0	0	1	0	1	2	0	0	0	0	0	0	4	0.0
GOTH	DTH Bivalves DTH Gastropods			0	1	0	0	0	0	2	0	0	5	0	8	0.7
EFEZ	DTH Gastropods EZ Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	EZ Fellaster zealandiae IOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	NEM Nemerteans			1	0	0	0	0	0	0	0	0	0	0	1	0.1
POTH	OTH Polychaetes			0	1	0	0	0	0	0	0	0	1	0	2	0.2
	OOLIG Oligochaetes DFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	1	0.1
OEDW	OFLAT Flatworms OEDW <i>Edwardsia</i>			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		ō	0	0	0	0	0	0	ō	Ő	0	0	0	0	0.0
TOTAL			32	56	55	61	26	41	74	44	47	64	47	74	621	51.8

HB April 2002

					COR		BER									
INDICAT	OR SPECIES		1	2	3	4	5	6	7	8	9	11	12	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae	CIZE	2	5	3	0	-	-		0	-	0	1	1	22	1.8
BAR	Arthritica hifurca	SIZE	1	10	21	5	2	0	10	0	4	3	0	18	74	6.2
DAD	Artimuca bilarca	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	10	21	5	2	0	10	0	4	3	0	18	74	6.2
BAS	Austrovenus stutchburyi	<5	6	9	7	15	2	23	15	19	16	24	10	32	178	14.8
		>5	0	0	0	0	0	0	2	1	0	2	0	0	5	0.4
		Total	6	9	7	15	2	23	17	20	16	26	10	32	183	15.3
BML	Macamona liliana	<5	1	3	0	0	0	0	3	0	0	0	1	2	10	0.8
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	3	o	o	0	0	3	0	0	0	1	2	10	0.8
BNH	Nucula hartvigiana	<2	1	0	0	0	0	0	1	0	0	0	0	0	2	0.2
	•	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	0	0	0	0	0	1	0	0	0	0	0	2	0.2
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHI	Theora lubrica	10tai	1	0	0	0	0	0	1	0	0	0	0	0	2	0.0
DITIE		>5	0	0	0	2	0	0	0	0	0	0	0	0	2	0.2
		Total	1	0	0	2	0	0	1	0	0	0	0	0	4	0.3
CUMAC	EANS															
CCL	Colurostylis lemurum		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GASTRO	OPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OAN	Anthoniouro ouroorodioto		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH			0	0	0	0	0	0	0	0	0	0	0	0	•	0.0
PAA	Aquilaspio aucklandica		4	2	0	3	7	2	4	0	0	5	0	0	27	2.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	0	0	2	1	0	1	0	1	0	0	0	5	0.4
PBOC	Polydorids (Boccardia syrtis)		1	0	1	1	0	1	0	0	2	2	0	0	8	0.7
PCOS	Cossura sp.		0	1	0	0	0	0	0	0	0	0	9	1	11	0.9
PGF	Goniada sp		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		1	1	0	0	0	2	0	0	1	0	0	1	6	0.5
PHF	Capitellidae (Heteromastus fi	liformis)	11	16	13	27	10	7	13	17	13	11	12	16	166	13.8
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		2	6	4	1	0	0	6	1	6	2	1	1	30	2.5
	Urbinia papillosa Paraopidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
			0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
CAMPH	Amphipods		0	2	2	3	2	2	11	3	2	13	3	1	44	3.7
CCRAB	Crabs		1	0	1	1	0	1	0	1	1	1	4	1	12	1.0
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
COST	Ostracods		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
вотн	Bivalves		0	0	1	0	1	2	0	0	0	0	0	0	4	0.3
GOTH	OTH Bivalves OTH Gastropods			0	1	0	0	0	0	2	0	0	5	0	8	0.7
EFEZ	OTH Gastropods FEZ Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	HOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	DNEM Nemerteans			1	0	0	0	0	0	0	0	0	0	0	1	0.1
POTH	POTH Polychaetes DOLIG Oligochaetes			0	1	0	0	0	0	0	0	1	1	0	2	0.2
OFLAT	OOLIG Oligochaetes DFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	0	0.1
OEDW	OFLAT Flatworms OEDW <i>Edwardsia</i>			ŏ	ō	ŏ	0	0	ō	õ	0	0	ō	0	0	0.0
OTHER	OEDW Edwardsia OTHER Misc. Other				0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			32	56	55	61	26	41	74	44	47	64	47	74	621	51.8

X October 2001

INDICA OR SPECIES 1 2 3 4 5 6 8 9 10 11 12 15 TOTAL MEAN ACCH Comphishe 2 1 0						COR	E NUN	BER									
AMPHIPODS I <thi< th=""><th>INDICAT</th><th>OR SPECIES</th><th></th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>8</th><th>9</th><th>10</th><th>11</th><th>12</th><th>15</th><th>TOTAL</th><th>MEAN</th></thi<>	INDICAT	OR SPECIES		1	2	3	4	5	6	8	9	10	11	12	15	TOTAL	MEAN
ACOM ACOM Complexide 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 <	AMPHIP	ODS															
NTROCCUp; animate SIZE I O I O I I I O I I I O I	ACOR	Corophiidae Rhovoconhalidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAB Arthritica bifunca -2 3 0 1 1 0 1 3 1 3 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1	BIVAL VI	FIIOXOCEPHAIIdae	SIZE	2	-	0	-	3	2	0	0	-	-	-	0	12	1.0
>-2 0	BAB	Arthritica bifurca	<2	3	0	1	1	0	0	0	0	0	1	0	0	6	0.5
Total 3 0 1 1 0 <td></td> <td></td> <td>>2</td> <td>0</td> <td>0.0</td>			>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS Austrovenus stutchburyi <5 16 21 21 20 25 9 13 17 22 15 25 13 22 24 191 15.9 BML Macamona illiana -5 2 8 2 40 18 25 32 47 31 39 32 398 32.2 BML Macamona illiana -5 1 2 1 6 1 3 3 4 4 4 33 2.2 BNH Mucula hartvojana <2			Total	3	0	1	1	0	0	0	0	0	1	0	0	6	0.5
5-5 17 10 7 22 15 9 12 15 22 13 22 24 191 15.9 BML Macamona Illana <5	BAS	Austrovenus stutchburyi	<5	16	21	21	20	25	9	13	17	22	18	17	8	207	17.3
Initial 33 31 28 42 40 16 25 32 41 31 39 32 338 33 34 4 0 0 0 0 0 0 0 0 0 0 0 15 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 <td></td> <td></td> <td>>5</td> <td>17</td> <td>10</td> <td>7</td> <td>22</td> <td>15</td> <td>9</td> <td>12</td> <td>15</td> <td>25</td> <td>13</td> <td>22</td> <td>24</td> <td>191</td> <td>15.9</td>			>5	17	10	7	22	15	9	12	15	25	13	22	24	191	15.9
BML Medicalitating intering -35 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 7 0.66 -15 1 2 1 2 1 6 2 3 2 0 5 3 4 4 33 2.8 BNH Nucula hartvigiana -2 17 27 1 20 12 16 20 9 24 14 42 29 228 12.18 BPA Paphies australis -5 0	DMI	Maaamana liliana	l otal	33	31	28	42	40	18	25	32	47	31	39	32	398	33.2
bits 1 2 1 6 2 3 2 0 5 3 4 4 33 2.8 BNH Nucula hartvigiana -2 3 2 2 3 7 6 2 1 1 1 4 4 2 33 2.8 BNH Nucula hartvigiana -2 3 2 2 3 2 1 2 1 1 4 4 2 7 29 19 12 16 20 9 24 14 42 27 229 10 25 18 42 27 292 222 10 25 18 42 29 262 21 1 0	DIVIL	Macamona iliana	<5 5-15	0	0	2	0	1	2	0	1	0	4	0	1	30 7	2.5
Total 3 8 4 6 9 8 3 4 8 8 4 5 70 5.8 BNH Nucula hartvigiana -2 3 2 2 3 7 6 2 1 4 0 2 33 2.8 BNH Nucula hartvigiana -2 17 27 1 20 9 24 14 42 27 229 22 22 10 25 18 42 29 262 21.8 BPA Paphies australis -5 0			>15	1	2	1	6	2	3	2	0	5	3	4	4	33	2.8
BNH Nucula hartvigiana -22 3 2 2 3 7 6 2 1 1 4 0 2 33 2.8 BPA Paphies australis -5 0 <td></td> <td></td> <td>Total</td> <td>3</td> <td>8</td> <td>4</td> <td>6</td> <td>9</td> <td>8</td> <td>3</td> <td>4</td> <td>8</td> <td>8</td> <td>4</td> <td>5</td> <td>70</td> <td>5.8</td>			Total	3	8	4	6	9	8	3	4	8	8	4	5	70	5.8
j>2 17 27 1 20 12 16 20 9 24 14 42 27 229 19. BPA Paphies australis <.5	BNH	Nucula hartvigiana	<2	3	2	2	3	7	6	2	1	1	4	0	2	33	2.8
Total 20 29 3 23 19 22 22 10 25 18 42 29 262 21.8 BPA Paphies austraiis -5 0			>2	17	27	1	20	12	16	20	9	24	14	42	27	229	19.1
BPA Pappnies austraits > 			Total	20	29	3	23	19	22	22	10	25	18	42	29	262	21.8
John Solution John Sol	BPA	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Total 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 <td></td> <td></td> <td>>15</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>3</td> <td>0.3</td>			>15	0	1	0	0	1	0	0	0	0	1	0	0	3	0.3
BTHL Theora lubrica <5 0 0 1 0			Total	0	1	0	0	1	0	0	0	0	1	0	0	3	0.3
>5 0	BTHL	Theora lubrica	<5	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
Total 0 0 1 0 0 0 0 0 0 0 0 0 1 0.1 CUMACEANS 1 0 1 4 3 0 0 0 2 0 0 11 0.9 GASTROPODS 1 0 1 4 3 0 0 0 2 0 0 11 0.9 GASTROPODS 1 0			>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMACIEANS Columostylis lemurum 1 0 1 4 3 0 0 0 2 0 0 11 0.9 CCL Columostylis lemurum 1 0 1 4 3 0 0 0 0 2 0 0 11 0.9 GASTROPODS Columostylis lemurum 0<			Total	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
CCL Colurostylis lemurum 1 0 1 4 3 0 0 0 2 0 0 11 0.9 GASTROPODS <th< td=""><td>CUMAC</td><td>EANS</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td>_</td><td>-</td><td></td><td>-</td><td></td><td></td></th<>	CUMAC	EANS						-	-	-		_	-		-		
GCA Cominella adspera 0	CCL	Colurostylis lemurum		1	0	1	4	3	0	0	0	0	2	0	0	11	0.9
Continent ausgera 0	GASTRO	Cominalla adapara		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Child Discussion Discussion </td <td>GUA</td> <td>Notoacmea sp</td> <td></td> <td>5</td> <td>9</td> <td>8</td> <td>8</td> <td>8</td> <td>1</td> <td>5</td> <td>20</td> <td>8</td> <td>15</td> <td>0</td> <td>0</td> <td>87</td> <td>7.3</td>	GUA	Notoacmea sp		5	9	8	8	8	1	5	20	8	15	0	0	87	7.3
OAN Anthopleura aureoradiata 0 </td <td>OTHER</td> <td></td> <td></td> <td></td> <td>-</td> <td>•</td> <td>•</td> <td>0</td> <td></td> <td>•</td> <td>20</td> <td>Ŭ</td> <td>10</td> <td>-</td> <td>0</td> <td></td> <td>7.0</td>	OTHER				-	•	•	0		•	20	Ŭ	10	-	0		7.0
POLYCHAETES Image: Constraint of the second se	OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	5	0	5	0.4
PAA Aquilaspio aucklandica 17 15 9 10 5 19 5 20 13 14 2 22 151 12.6 PAGL Aglaophamus sp. 0	POLYCH	AETES															
PAGL Aglaophamus sp. 0	PAA	Aquilaspio aucklandica		17	15	9	10	5	19	5	20	13	14	2	22	151	12.6
PAO Aonides oxycephala 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0.1 PAR Aricides sp. 0	PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR Aracidea sp. 0	PAO	Aonides oxycephala		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
PCOS Cossura sp. 0	PAR	Aricidea sp. Roludorido (Roccordio surtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PEUC Euchone sp. 0	PCOS	Cossura sp.		0	0	0	0	0	0	0	o	o	0	0	0	0	0.0
PGE Goniada sp. 0 <	PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY Glycera sp. 1 1 1 1 1 1 1 2 2 2 0 1 1 1 13 1.1 PHF Capitellidae (Heteromastus filiformis) 4 2 2 7 1 4 3 0 5 3 8 4 43 3.6 PMD Magelona dakini 0 <th< td=""><td>PGE</td><td>Goniada sp.</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td></th<>	PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PHF Capitellidae (Heteromastus filiformis) 4 2 2 7 1 4 3 0 5 3 8 4 43 3.6 PMD Magelona dakini 0	PGLY	Glycera sp.		1	1	1	1	2	2	2	0	1	1	0	1	13	1.1
PMIC Mageiona dakini 0	PHF	Capitellidae (Heteromastus fi	liformis)	4	2	2	7	1	4	3	0	5	3	8	4	43	3.6
Initial registration Image: Second secon	PNIC	Magelona dakini Nerejdae		0	1	1	0	2	0	0	3	1	0	1	1	0 17	0.0
PPAR Paraonidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.1 0.1 NON INLICATOR SPECIES Image: Comparison of the system Image: Compa	POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON INFLICATOR SPECIES I	PPAR	Paraonidae		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
CAMPH Amphipods 1 0 2 0 3 2 0 2 2 4 0 0 16 1.3 CCRAB Crabs 0 0 2 3 1 1 1 2 2 0 0 16 1.3 CCUM Cumaceans 0 <td>NON INC</td> <td>ICATOR SPECIES</td> <td></td>	NON INC	ICATOR SPECIES															
CCRAB Crabs 0 0 2 3 1 1 1 2 2 0 0 13 1.1 CCUM Cumaceans 0	CAMPH	Amphipods		1	0	2	0	3	2	0	2	2	4	0	0	16	1.3
CCUM Cumaceans 0 <t< td=""><td>CCRAB</td><td>Crabs</td><td></td><td>0</td><td>0</td><td>2</td><td>3</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>2</td><td>0</td><td>0</td><td>13</td><td>1.1</td></t<>	CCRAB	Crabs		0	0	2	3	1	1	1	1	2	2	0	0	13	1.1
	CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	COST	Ostracods		0	0	0	0	0	1	1	0	0	0	1	0	3	0.1
CSHR Shrimps/Mysids 0 0 0 1 1 1 0 0 0 1 0 0 3 0.3	CSHR	Shrimps/Mysids		0	0	0	1	1	0	0	0	1	0	0	0	3	0.3
COTH Other Crustaceans 0 0 0 0 1 3 0 0 0 1 5 0.4	сотн	Other Crustaceans		0	0	0	0	0	1	3	0	0	0	0	1	5	0.4
BOTH Bivalves 0 0 0 0 0 1 0 0 0 2 0.2	BOTH	OTH Other Crustaceans OTH Bivalves			0	0	0	0	0	1	0	1	0	0	0	2	0.2
GOTH Gastropods 9 1 0 0 1 0 3 3 5 3 10 0 35 2.9	GOTH	OTH Bivalves OTH Gastropods			1	0	0	1	0	3	3	5	3	10	0	35	2.9
	EHO	FEZ Fellaster zealandiae HOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM Nemerteans O	ONFM	HOL Holuthurians DNEM Nemerteans			0	0	0	1	3	0	0	1	1	0	3	9	0.1
POTH Polychaetes 4 4 9 2 3 6 3 5 15 11 10 3 75 6.3	POTH	DNEM Nemerteans POTH Polychaetes			4	9	2	3	6	3	5	15	11	10	3	75	6.3
OOLIG Oligochaetes 0 0 0 0 1 0 0 0 0 1 0.1	OOLIG	ODLIG Oligochaetes			0	0	0	0	1	0	0	0	0	0	0	1	0.1
OFLAT Flatworms 0 1 0 1 0.1	OFLAT	OFLAT Flatworms			1	0	0	0	0	0	0	0	0	0	0	1	0.1
OEDW Edwardsia 0 0 1 1 0 0 1 0 0 0 3 0.3 OFTURE Min	OEDW	OEDW Edwardsia			0	0	1	1	0	0	0	1	0	0	0	3	0.3
OTHER Wilsc. Uner [Echluran /; chitons] U U I U <thu< th=""> <thu< th=""> U</thu<></thu<>	TOTAL	OTHER Misc. Other [Echiuran?; chitons]				1 72	0 115	0 104	0 91	77	102	138	0 116	4	101	5 1254	0.4

X April 2002

					COR	E NUN	BER									
INDICAT	OR SPECIES		1	4	5	6	7	8	10	11	12	13	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae Bhovooonholidoo		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVAL V	FILOXOCEPHAIldae	SIZE	0	0	-	0	-	0	0	0	0	-	0	0	3	0.5
BAB	Arthritica bifurca	<2	0	2	0	0	1	0	1	5	3	0	0	4	16	1.3
D/ (D		>2	0	1	0	1	0	0	1	0	0	0	0	0	3	0.3
		Total	0	3	0	1	1	0	2	5	3	0	0	4	19	1.6
BAS	Austrovenus stutchburyi	<5	1	0	9	3	3	7	2	3	6	2	5	11	52	4.3
		>5	31	4	17	12	22	17	17	25	16	10	16	23	210	17.5
		Total	32	4	26	15	25	24	19	28	22	12	21	34	262	21.8
BML	Macamona liliana	<5	0	6	7	6	6	6	0	3	5	3	6	3	51	4.3
		5-15	0	1	0	0	1	0	0	0	2	0	2	1	7	0.6
		>15	2	0	3	3	2	1	2	2	3	2	2	3	25	2.1
DNILL	Nu sula kartuisiana	I otal	2	/	10	9	9	/	2	5	10	5	10	/	03	0.9
BINH	Nucula nartviglana	<2	5 21	0	10	2	10	2	21	10	24	4 25	12	17	27	2.3
		Total	26	0	20	36	55	23	22	20	24	29	12	19	204	24.3
BPA	Panhies australis	<5	0	0		0	0	0	0	0	0		0	0	0	0.0
2	i apinoo aadaano	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
CUMAC	EANS															
CCL	Colurostylis lemurum		5	3	2	7	1	2	0	0	2	0	5	2	29	2.4
GASTRO	DPODS															
GCA	Cominella adspera		0	0	0	0	4	0	0	0	0	0	0	0	4	0.3
	Notoacmea sp.		4	0	12	10	0	5	10	3	2	- 11	0	0	09	0.0
			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH			Ū	0	0	0	0		0	Ū		0	0	0	v	0.0
PAA	Aquilaspio aucklandica		2	10	9	18	22	21	14	13	12	30	17	17	185	15.4
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	1	0	0	0	1	2	0.2
PAR	Aricidea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PBOC	Polydorids (Boccardia syrtis)		0	1	0	0	0	1	0	0	0	0	0	0	2	0.2
PCOS	Cossura sp.		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
	Giycera sp. Capitellidae (Hotoromastus fi	iliformic)	1	1	5	5	0	2	0	2	6	0	5	7	с 60	0.4
PMD	Magelona dakini	liioinnis)	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		0	3	5	1	0	0	1	0	1	1	1	2	15	1.3
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	1	1	0	0	2	0	0	0	0	0	0	4	0.3
NON IN	ICATOR SPECIES															
CAMPH	Amphipods		0	3	0	0	0	1	1	0	0	2	0	0	7	0.6
CCRAB	Crabs		1	1	0	1	0	0	1	1	0	3	0	0	8	0.7
CCOM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	2	0.0
COST	Ostracods		0	0	7	3	1	3	0	1	0	0	0	1	16	1.3
CSHR	Shrimps/Mysids		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
COTH	Other Crustaceans		0	1	0	0	0	0	0	0	0	0	0	1	2	0.2
BOTH	DTH Other Crustaceans DTH Bivalves			0	0	0	0	0	0	0	0	0	0	0	0	0.0
GOTH)TH Bivalves)TH Gastropods			1	1	3	4	1	7	2	1	3	1	3	29	2.4
EFEZ	EZ Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	HOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	NEM Nemerteans			0	1	0	1	0	0		2	0	2	1	8	0.7
POTH	OTH Polychaetes OCLIG Oligochaetes				4	3	b D	3	2			b D	0	2	31	2.6
	OOLIG Oligochaetes DFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	0	0.1
OEDW	OFLAT Flatworms OEDW <i>Edwardsia</i>				0	0	0	0	0	0	0	0	0	o	0	0.0
OTHER	Misc. Other [chiton]		1	0	0	0	1	0	0	0	0	1	0	0	3	0.3
TOTAL			78	42	105	113	146	102	89	84	89	113	75	109	1145	95.4

WI April 2001

					COR	E NUN	IBER												
INDICAT	OR SPECIES		1	2	4	5	6	8	9	10	11	13	14	15	17	18	20	TOTAL	MEAN
AMPHIP	ODS																		
ACOR	Corophiidae		0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	2	0.1
APHOX	Phoxocephalidae		1	1	0	1	0	0	1	0	0	2	0	0	0	0	0	6	0.4
BIVALV	ES	SIZE										_							
BAB	Arthritica bifurca	<2	0	0	0	0	0	0	0	0	19	6	2	2	0	0	0	29	1.9
		>2 Total	0	0	0	0	0	0	0	0	10	0	0	2	0	0	0	29	1.0
BAS	Austrovenus stutchhurvi	-5	2	1	2	1	2	5	8	6	6	8	7	25	21	15	14	123	82
DAG	nuonovonuo olulonburyi	>5	7	17	4	9	3	24	25	19	4	18	12	2	13	17	11	185	12.3
		Total	9	18	6	10	5	29	33	25	10	26	19	27	34	32	25	308	20.5
BML	Macamona liliana	<5	15	13	19	16	24	2	7	1	16	4	5	11	28	16	27	204	13.6
		5-15	4	2	0	0	6	2	4	0	0	0	0	1	5	5	2	31	2.1
		>15	1	4	2	0	0	2	1	2	3	7	3	4	1	2	1	33	2.2
		Total	20	19	21	16	30	6	12	3	19	11	8	16	34	23	30	268	17.9
BNH	Nucula hartvigiana	<2	1	4	0	2	3	0	1	2	6	7	3	2	1	0	1	33	2.2
		>2 Total	2	3	0	0	0	1	0	2	9	15	3	1	0	0	1	3/	2.5
DDA	Panhiaa ayatralia	TOTAL	3	/	0	2	0	1	0	4	15	22	0	3	1	0	2	70	4.7
DFA	r apriles australis	5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	1	0	0	0	0	0	0	0	0	0	2	2	1	0	0	6	0.4
		>5	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	2	0.1
		Total	1	0	0	0	2	0	0	0	0	0	2	2	1	0	0	8	0.5
CUMAC	EANS		0	0	0	4	0	-		0	0	-	0	0	-	-	0		
CASTR			0	2	2	4	3	1	1	2	3	1	0	0	1	1	0	21	1.4
GCA	Cominella adenera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHF	Notoacmea sn		0	0	0	0	0	0	1	1	0	14	3	0	0	0	0	19	1.3
OTHER			-	-	-	-	-	-			-		-	-	-	-			
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	IAETES																		
PAA	Aquilaspio aucklandica		9	7	14	4	4	8	1	13	15	17	12	13	7	9	3	136	9.1
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	2	0.1
PAR	Aricidea sp.		3	0	2	0	1	1	3	0	11	0	4	0	1	1	8	35	2.3
PBOC	Cossura en		1	0	0	0	0	0	0	0	0	0	3	0	3	1	2 1	10	1.1
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2
PGE	Goniada sp.		0	0	0	0	0	1	0	0	0	0	0	0	2	0	0	3	0.2
PGLY	Glycera sp.		0	3	0	1	0	0	0	0	3	2	1	0	0	0	0	10	0.7
PHF	Capitellidae (Heteromastus f	iliformis)	23	29	22	7	14	1	14	18	39	17	23	23	27	29	34	320	21.3
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PNIC	Nereidae		6	4	8	12	1	11	4	11	11	3	8	14	6	8	12	119	7.9
	Orbinia papiliosa		0	0	0	0	0	1	0	0	25	0	0	0	1	0	0	53	0.0
	ICATOR SPECIES		0	0	0	0	2	1	0	0	35	0	0	0	1	0	0	55	0.0
CAMPH	Amphipods		0	0	1	0	5	4	1	1	0	0	2	1	0	0	1	16	1.1
CCRAB	Crabs		0	1	0	0	1	3	1	0	0	1	0	1	0	0	1	9	0.6
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	3	0.2
COST	Ostracods		0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	3	0.2
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Other Crustaceans		0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	10	0.0
GOTH	Gastropods		0	0	0	2	2	1	0	1	1	0	0	0	0	0	4	7	0,5
EFEZ	Fellaster zealandiae		o	o	0	0	0	0	ō	0	0	0	0	0	Ő	õ	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	8	4	0	0	2	1	2	0	3	2	2	2	3	3	32	2.1
POTH	Polychaetes		0	0	0	0	0	0	3	0	7	12	4	0	0	1	2	29	1.9
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
	⊢latworms Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			76	101	87	60	73	71	82	86	191	142	104	115	121	109	129	1547	103.1

WI July 2001

					COR		IBER									
INDICAT	OR SPECIES		2	4	5	6	7	8	9	10	11	12	13	15	TOTAL	MEAN
AMPHIP	PODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Prioxocephalidae	SIZE	3	3	3	0	-	0	э	4	4	1	1	1	20	2.2
BAR	Arthritica bifurca	5121	0	1	0	0	0	0	0	0	4	0	0	1	6	0.5
DAD	Alumida biluica	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	1	0	0	0	0	0	0	4	0	0	1	6	0.5
BAS	Austrovenus stutchburyi	<5	5	2	4	6	6	2	7	12	3	4	1	4	56	4.7
		>5	26	14	38	15	8	8	14	23	18	19	22	18	223	18.6
		Total	31	16	42	21	14	10	21	35	21	23	23	22	279	23.3
BML	Macamona liliana	<5	6	2	2	6	16	5	13	6	6	1	1	5	69	5.8
		5-15	3	3	5	1	6	3	1	2	4	6	8	5	47	3.9
		>15 Total	2	3	4	4	2	10	2	15	4	2	10	4	37	3.1
BNH	Nucula hartvigiana	-2	0	0	1	1	4	10	0	1	1	0	10	0	10	0.8
DIVIT	Nuoula hartigiana	>2	0	2	5	2	0	2	2	2	6	0	4	1	26	2.2
		Total	0	2	6	3	4	3	2	3	7	0	5	1	36	3.0
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	0	0	2	0	1	0	0	0	0	1	4	0.3
		>5 Total	0	1	1	0	2	0	3	1	0	0	0	2	0 12	1.0
CUMAC	EANS	Total	-		-	•	-	Ŭ	-		-	•	-	0		1.0
CCL	Colurostylis lemurum		0	0	0	0	0	1	0	0	0	0	0	2	3	0.3
GASTR	OPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	2	0	2	0	0	0	4	0.3
OTHER																
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	IAETES			-			_	_								
	Aquilaspio aucklandica		2	5	8	2		5	9	0	5	6	1	4	54	4.5
PAGL	Agiaophanius sp. Aonides oxycenhala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	0	0	0	1	0	1	1	0	1	5	3	12	1.0
PBOC	Polydorids (Boccardia syrtis)		0	0	1	0	0	0	0	0	0	0	0	1	2	0.2
PCOS	Cossura sp.		3	0	0	0	1	0	0	0	0	0	2	0	6	0.5
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
PGLY	Glycera sp.	ilife rue ie)	0	1	1	0	0	1	2	1	1	0	10	10	8	0.7
	Magelona dakini	iiiioiiiiis)	24	0	23	0	43	0	1	0	9	0	0	0	1	0.1
PNIC	Nereidae		9	4	5	3	3	4	4	2	2	1	8	3	48	4.0
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	0	0	0	1	0	0	1	0.1
NON IN	ICATOR SPECIES															
CAMPH	Amphipods		0	2	0	0	1	0	0	6	0	0	0	0	9	0.8
CCRAB	Crabs		0	0	0	0	0	1	1	0	1	0	6	0	9	0.8
CLOM	Cumaceans		0	1	0	0	0	0	0	0	0	0	0	0	1	0.0
COST	Ostracods		1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
CSHR	Shrimps/Mysids		1	1	0	1	2	0	6	0	0	0	0	0	11	0.9
сотн	Other Crustaceans		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
BOTH	Bivalves		2	0	0	0	1	0	0	0	0	0	0	1	4	0.3
GOTH	TH Bivalves TH Gastropods			0	0	1	0	0	0	0	0	2	2	0	5	0.4
EFEZ	Z Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
	OL Holuthurians EM Nemerteans			1	1	0	0	0	0	0	0	0	0	0	10	0.0
POTH	IEM Nemerteans ITH Polychaetes			2	0	0	2	0	1	3	8	2	0	5	25	2.1
OOLIG	DTH Polychaetes DLIG Oligochaetes			Ō	0	Ő	ō	ŏ	0	1	0	0	ō	0	1	0.1
OFLAT	FLAT Flatworms			0	0	0	1	0	0	0	0	0	0	0	1	0.1
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			89	49	102	69	1 108	43	85	90	78	70	81	80	944	78.7

WI October 2001

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	5	6	7	8	9	10	11	12	13	14	15	TOTAL	MEAN
AMPHIP	PODS															
ACOR	Corophiidae Rhoxocophalidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIVALV	ES	SIZE	0	0	-	-	-	0	4	2	2	5	4	1	21	1.0
BAB	Arthritica bifurca	<2	0	1	2	0	0	0	0	1	2	0	2	2	10	0.8
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	1	2	0	0	0	0	1	2	0	2	2	10	0.8
BAS	Austrovenus stutchburyi	<5	8	25	32	27	35	6	13	19	36	31	41	19	292	24.3
		>5	23	8	17	17	19	19	13	24	12	13	24	4	193	16.1
DMI	Macamana liliana	I otal	31	33	49	44	54	25	26	43	48	44	65 E	23	485	40.4
DIVIL	Macaniona illiana	<0 5-15	4	3	1	2	9 4	1	1	4	4	2	2	0	23	5.9 1.9
		>15	0	2	2	1	0	5	2	1	3	1	1	4	22	1.8
		Total	19	8	12	12	13	7	9	11	7	4	8	6	116	9.7
BNH	Nucula hartvigiana	<2	2	1	2	0	0	3	7	2	0	0	0	3	20	1.7
		>2	1	0	2	0	1	9	12	0	0	0	2	0	27	2.3
		Total	3	1	4	0	1	12	19	2	0	0	2	3	47	3.9
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	1	0	0	0	1	0	1	1	1	0	0	0	5	0.4
		>5	0	1	0	0	0	0	0	0	0	2	0	0	3	0.3
		Total	1	1	0	0	1	0	1	1	1	2	0	0	8	0.7
CUMAC	EANS															
CCL	Colurostylis lemurum		1	0	0	1	0	0	1	0	0	0	0	0	3	0.3
GASTR	Cominalla adapara		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GCA	Cominella adspera		0	0	1	0	1	0	7	0	0	0	0	0	16	0.0
OTHER			0		'	0	'	-	'	0	0	0			10	1.0
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	AETES															
PAA	Aquilaspio aucklandica		4	2	6	4	9	25	7	7	8	0	8	2	82	6.8
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	2	0	0	0	0	0	0	0	2	0	4	0.3
PAR	Aricidea sp. Reluderide (Receardia surtis)		6	3	1	0	1	1	1	1	4	0	5	4	27	2.3
PCOS	Cossura sp		0	1	2	0	0	0	0	2	2	1	4	0	8	0.7
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGE	Goniada sp.		0	0	0	0	0	1	0	0	1	1	0	0	3	0.3
PGLY	Glycera sp.		0	0	1	1	0	2	1	2	0	0	0	0	7	0.6
PHF	Capitellidae (Heteromastus fi	iliformis)	17	17	14	17	38	28	17	21	3	17	44	24	257	21.4
	Magelona dakini Noroidaa		0	0	0	0	0	0	0	0	0	0	0	0	0 27	0.0
POP	Orbinia papillosa		0	0	0	4	0	0	0	4	4	0	0	0	0	0.0
PPAR	Paraonidae		5	0	0	0	2	4	3	4	0	0	0	0	18	1.5
NON IN	DICATOR SPECIES															
CAMPH	Amphipods		1	1	0	2	0	0	1	0	2	1	0	0	8	0.7
CCRAB	Crabs		0	0	0	0	0	0	1	1	2	3	2	1	10	0.8
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COST	Isopods Ostracode		0	0	0	1	0	0	0	1	0	1	0	0	3	0.0
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
BOTH	Bivalves		1	0	1	0	0	0	0	0	0	0	1	4	7	0.6
GOTH	OTH Bivalves OTH Gastropods			1	0	0	0	1	2	1	2	1	3	2	13	1.1
EFEZ	FEZ Fellaster zealandiae			0	0	0	0	0	0	0	0	0	0	0	0	0.0
	HOL Holuthurians			0	3	1	2	0	1	1	0	1	2	0	11	0.0
POTH	DNEM Nemerteans POTH Polychaetes			0	0	0	0	11	3	1	0	1	0	4	20	1.7
OOLIG	POTH Polychaetes DOLIG Oligochaetes			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	DELIG Oligochaetes DFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	DEDW Edwardsia			0	0	0	0	0	1	0	0	0	0	0	1	0.1
OTHER	THER Misc. Other				0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			91	/0	103	88	126	121	105	110	88	85	158	/6	1221	101.8

WI January 2002

NIDELATOR SPECIES I						COR		IBER									
Amerina OSS I <t< th=""><th>INDICAT</th><th>OR SPECIES</th><th></th><th>1</th><th>2</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>10</th><th>12</th><th>13</th><th>14</th><th>15</th><th>TOTAL</th><th>MEAN</th></t<>	INDICAT	OR SPECIES		1	2	3	4	5	6	7	10	12	13	14	15	TOTAL	MEAN
ACOR Computational solution of a serie of a	AMPHIP	PODS															
Arrowspin above processing above procesing above processing above processing above processing above pr	ACOR	Corophiidae Rhoxocophalidao		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAB Arthratica bifunca -2 0	BIVAL V	Floxocephandae	SIZE	0	0	0	0	-	5	3	2	4	2	0	0	15	1.5
5-2 0	BAB	Arthritica bifurca	<2	2	0	0	0	5	0	0	3	6	0	2	0	18	1.5
Total 2 0 <td></td> <td></td> <td>>2</td> <td>0</td> <td>0.0</td>			>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BAS Austrovenus stuchburyi -iso 11 2 2 1 1 1 2 2 2 2 2 1			Total	2	0	0	0	5	0	0	3	6	0	2	0	18	1.5
->5 11 12 0 22 11 3 12 7 9 13 14 15 13 14 95 14 34 6 6 24 25 17 37 15 3 1 1 1 1 1 3 10 1 1 1 3 10 3 10 3 10 3 10 3 10 3 10 1 3 10 3 10 1 3 10 11 10 11 3 10 11 11 11 10 11 11 10 11 10	BAS	Austrovenus stutchburyi	<5	24	25	6	12	14	14	25	2	9	23	21	5	180	15.0
Interm Interm<			>5 Totol	11	12	0	22	11	3	12	7	9	11	15	1	114	9.5 24 F
Unit Induction motion 5-15 0 0 4 2 1 2 2 5 0 0 2 7 1 2 1 2 5 0 0 2 1 2 5 0 0 2 1 3 1 1 3 1 1 2 1 1 2 1 3 1 <th1< th=""> 1 <th1< th=""> 1</th1<></th1<>	BMI	Macamona liliana	Total	35	5	0	34 5	25	6	37	9	18	34 3	30	0	294	24.5
j j< j< j j j	DIVIL	Macantona ililana	5-15	0	4	3	1	4	2	4	2	2	1	2	5	30	2.5
Total 7 11 3 10 9 10 6 5 9 8 6 10 92 7.7 BNH Nacula haringiana -22 1 2 0 9 0 1 3 0 1 10 0 7 255 4.6 BPA Paphes austrails C5 0			>15	2	2	0	4	2	2	0	2	2	4	2	4	26	2.2
BNH Nucula harridgiana <2 3 3 0 19 2 0 4 3 4 1 0 7 55 4.6 Total 4 5 0 0 0 1 3 0 1 1 0 5 1 1 1 0 5 1 1 0 <td< td=""><td></td><td></td><td>Total</td><td>7</td><td>11</td><td>3</td><td>10</td><td>9</td><td>10</td><td>5</td><td>5</td><td>9</td><td>8</td><td>5</td><td>10</td><td>92</td><td>7.7</td></td<>			Total	7	11	3	10	9	10	5	5	9	8	5	10	92	7.7
>2 1 2 0 9 0 1 3 0 1 0 1 0 1 4 14	BNH	Nucula hartvigiana	<2	3	3	0	19	2	0	4	3	4	1	9	7	55	4.6
India 4 5 0 2 1 7 3 5 1 1 14 14 84 7.0 BPA Paphies australis -5 0 <td< td=""><td></td><td></td><td>>2</td><td>1</td><td>2</td><td>0</td><td>9</td><td>0</td><td>1</td><td>3</td><td>0</td><td>1</td><td>0</td><td>5</td><td>7</td><td>29</td><td>2.4</td></td<>			>2	1	2	0	9	0	1	3	0	1	0	5	7	29	2.4
BPA Paphnes dustraise <td></td> <td>D // / //</td> <td>l otal</td> <td>4</td> <td>5</td> <td>0</td> <td>28</td> <td>2</td> <td>1</td> <td>7</td> <td>3</td> <td>5</td> <td>1</td> <td>14</td> <td>14</td> <td>84</td> <td>7.0</td>		D // / //	l otal	4	5	0	28	2	1	7	3	5	1	14	14	84	7.0
b 1.5 0	вра	Paphies australis	<5 5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Total 0 <td></td> <td></td> <td>>15</td> <td>0</td> <td>o</td> <td>0.0</td>			>15	0	0	0	0	0	0	0	0	0	0	0	0	o	0.0
BTHL Theora lubrica -5 0			Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
5-5 0	BTHL	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
Total 0 <td></td> <td></td> <td>>5</td> <td>0</td> <td>0.0</td>			>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMACEANS I			Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CLC Columestynis lemurum 0	CUMAC	EANS															
Instruction Image: Construction of the set of th	CASTR			0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CAR Commental adjustries 0	GCA	Cominalla adepara		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER OTHER O	GNHE	Notoacmea sp.		0	2	1	8	1	5	4	3	0	1	6	2	33	2.8
OAN Anthopleura aureoradiata 0 PRCAgalionida spin<	OTHER			-	_	-	-	-	-		-	-	-	-			
POLYCHAETES Image: Constraint of the second se	OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAA Aquilaspio aucklandica 5 9 3 13 9 2 12 6 2 2 8 1 72 6.0 PAGL Aglaophamus sp. 0	POLYCH	AETES															
PAGL Agliaophamus sp. 0	PAA	Aquilaspio aucklandica		5	9	3	13	9	2	12	6	2	2	8	1	72	6.0
PAC Anides axycepitale 0	PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR Anticable sp. 2 0 3 1 <th1< th=""> 1 1</th1<>	PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS Cossura sp. 0 0 1	PBOC	Polydorids (Boccardia syrtis)		0	1	1	2	0	1	2	0	4	0	1	1	9	0.8
PEUC <i>Euchone</i> sp.00 <td>PCOS</td> <td>Cossura sp.</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>2</td> <td>0</td> <td>1</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>7</td> <td>0.6</td>	PCOS	Cossura sp.		0	0	0	1	0	2	0	1	3	0	0	0	7	0.6
PGE Goniada sp. 0 <	PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY Glycerasp. 1 2 1 <	PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PHF Capitellicate (Heteromastus full ormis) 43 33 39 49 24 33 27 3 32 32 32 36 396 33.0 PMD Magelona dakini 0	PGLY	Glycera sp.		1	2	1	1	1	0	0	4	1	1	1	2	15	1.3
PNIC Norgenina darin 0	PHF	Capitellidae (Heteromastus fi	iliformis)	43	33	39	49	24	33	27	3	32	32	45	36	396	33.0
POP Orbinia papillosa 0	PNIC	Nereidae		1	0	2	2	1	2	5	0	2	1	3	0	19	1.6
PPAR Paraonidae 0 0 3 0 1 3 1 0 1 0 4 4 17 1.4 NON INLICATOR SPECIES -	POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON INLUCATOR SPECIESII	PPAR	Paraonidae		0	0	3	0	1	3	1	0	1	0	4	4	17	1.4
CAMPH Amphipods 0 0 0 0 1 0 1 1 0 0 3 0.3 CCRAB Crabs 0 0 1 0 1 0 4 3 0 2 0 1 12 1.0 CCUM Cumaceans 0 <	NON IN	DICATOR SPECIES															
CCHAB Crabs Color Color <thcolor< th=""> <thcolor< th=""> <thco< td=""><td>CAMPH</td><td>Amphipods</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>0</td><td>0</td><td>3</td><td>0.3</td></thco<></thcolor<></thcolor<>	CAMPH	Amphipods		0	0	0	0	0	0	1	0	1	1	0	0	3	0.3
Correst Correst <t< td=""><td>CCHAB</td><td>Crabs</td><td></td><td>0</td><td>0</td><td></td><td>0</td><td></td><td>0</td><td>4</td><td>3</td><td>0</td><td>2</td><td>0</td><td></td><td>12</td><td>1.0</td></t<>	CCHAB	Crabs		0	0		0		0	4	3	0	2	0		12	1.0
COST Ostracods 1 2 0 0 0 2 0 <t< td=""><td>CISO</td><td>Isopods</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>0.0</td></t<>	CISO	Isopods		0	0	0	0	0	0	0	0	0	1	0	0	1	0.0
CSHR Shrimps/Mysids 0 1 0	COST	Ostracods		1	2	0	0	0	0	2	0	0	0	0	0	5	0.4
COTH Other Crustaceans 0 0 0 0 1 0 0 1 0 2 0.2 BOTH Bivalves 4 9 5 5 3 18 2 0 5 2 9 5 677 5.6 GOTH Gastropods 1 0 0 2 1 1 4 2 2 3 2 0 18 1.5 EFEZ Fellaster zealandiae 0 <t< td=""><td>CSHR</td><td>Shrimps/Mysids</td><td></td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0.1</td></t<>	CSHR	Shrimps/Mysids		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
BOTH Bivalves 4 9 5 5 3 18 2 0 5 2 9 5 67 5.6 GOTH Gastropods 1 0 0 2 1 1 4 2 2 3 2 0 18 1.5 EFEZ Fellaster zealandiae 0 <td>COTH</td> <td>Other Crustaceans</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>2</td> <td>0.2</td>	COTH	Other Crustaceans		0	0	0	0	0	1	0	0	0	0	1	0	2	0.2
GOTH Gastropoos 1 0 0 2 1 1 4 2 2 3 2 0 18 1.5 EFEZ Fellaster zealandiae 0 <td>BOTH</td> <td>Bivalves</td> <td></td> <td>4</td> <td>9</td> <td>5</td> <td>5</td> <td>3</td> <td>18</td> <td>2</td> <td>0</td> <td>5</td> <td>2</td> <td>9</td> <td>5</td> <td>67</td> <td>5.6</td>	BOTH	Bivalves		4	9	5	5	3	18	2	0	5	2	9	5	67	5.6
EHQL Nucleon Issues of the second	GOTH FFF7	iOTH Gastropods FFZ Fellaster zealandiae			0	0	2	1	1	4	2	2	3	2	0	18	1.5
ONEM Nemerteans 2 8 1 1 1 1 3 0 1 5 0 24 2.0 POTH Polychaetes 2 1 1 9 2 6 2 0 1 5 0 24 2.0 POTH Polychaetes 2 1 1 9 2 6 2 0 2 0 1 5 31 2.6 OOLIG Oligochaetes 0 <td>EHOL</td> <td colspan="3">FEZ <i>Fellaster zealandiae</i> HOL Holuthurians</td> <td>0</td> <td>0.0</td>	EHOL	FEZ <i>Fellaster zealandiae</i> HOL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
POTH Polychaetes 2 1 1 9 2 6 2 0 2 1 5 31 2.6 OOLIG Oligochaetes 0 <	ONEM	HOL Holuthurians DNEM Nemerteans			8	1	1	1	1	1	3	0	1	5	0	24	2.0
OOLIG Oligochaetes 0	POTH	ONEM Nemerteans POTH Polychaetes			1	1	9	2	6	2	0	2	0	1	5	31	2.6
OFLAT Flatworms 0 <	OOLIG	DOLIG Oligochaetes			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW DWardska 0 <th< td=""><td>OFLAT</td><td colspan="3">OFLAT Flatworms DEDW Edwardsia</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0</td></th<>	OFLAT	OFLAT Flatworms DEDW Edwardsia			0	0	0	0	0	0	0	0	0	0	0	0	0.0
		DEDW <i>Edwardsia</i> DTHER Misc. Other			0	0	0	0	0	0	0	0	0	0	0	U O	0.0
TOTAL 110 121 70 166 89 107 120 48 97 93 148 92 1261 105.1	TOTAL	THER Misc. Other OTAL				70	166	89	107	120	48	97	93	148	92	1261	105.1

WI April 2002

					COR	E NUN	BER									
INDICAT	OR SPECIES		1	3	4	5	6	7	9	10	11	12	13	15	TOTAL	MEAN
AMPHIP	PODS														ĺ	
ACOR	Corophiidae		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
APHOX	Phoxocephalidae		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
BIVALV	IES	SIZE														
BAB	Arthritica bifurca	<2	4	2	8	1	8	1	1	1	2	15	3	12	58	4.8
		>2	0	0	0	0	2	0	0	1	0	0	0	1	4	0.3
DAC	Austrausanus stutabhur i	I otal	4	2	8	1	10	1	1	2	2	15	3	13	02	0.2
BAS	Austrovenus stutchburyi	<5 \5	25	13	13	22	25	10	21 15	23	25	4	2 11	37	225	9.2
		Total	25	19	15	31	27	20	36	54	27	16	13	51	335	27.9
BML	Macamona liliana	<5	3	6	3	3	0	7	4	1	0	5	1	0	33	2.8
		5-15	3	2	3	5	5	3	0	3	2	2	2	1	31	2.6
		>15	0	2	0	0	4	0	7	3	3	3	3	8	33	2.8
		Total	6	10	6	8	9	10	11	7	5	10	6	9	97	8.1
BNH	Nucula hartvigiana	<2	2	2	0	3	4	4	4	2	2	1	0	3	27	2.3
		>2	3	3	0	6	5	6	23	58	9	5	1	11	130	10.8
		Total	5	5	0	9	9	10	27	60	11	6	1	14	157	13.1
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
RTHI	Theora lubrica	i olai	0	0	0	0	0	0	0	0	0	0	1	0	1	0.0
DINL	THEOTA IUDIICA	<0 >5	0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
		Total	õ	0	1	0	0	0	0	0	0	0	1	0	2	0.2
CUMAC	EANS			-				-	-		-					
CCL	Colurostylis lemurum		0	1	0	0	0	0	0	1	0	0	1	0	3	0.3
GASTR	OPODS															
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		3	0	1	14	13	3	29	12	12	2	0	15	104	8.7
OTHER																
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	AETES															
PAA	Aquilaspio aucklandica		9	7	3	12	4	6	7	21	1	3	1	12	86	7.2
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp. Reluderide (Researdie ourtie)		1	3	1	0	0	1	2	0	0	1	0	0	9	0.8
PCOS	Cossura sp		0	0	0	0	0	0	0	0	0	0	0	2	0	0.0
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	0	ŏ	0.0
PGE	Goniada sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PGLY	Glycera sp.		1	0	0	2	3	0	1	0	0	0	0	0	7	0.6
PHF	Capitellidae (Heteromastus fi	iliformis)	15	18	26	24	19	23	11	15	0	3	8	27	189	15.8
PMD	Magelona dakini		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
PNIC	Nereidae		6	9	4	2	3	5	2	1	1	8	4	0	45	3.8
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
NON			1	3		U	U	0	U	U	U	U	U	U	2	0.4
	Amphipods		0	0	0	0	1	0	0	0	0	0	1	0	2	0.2
CCBAB	Crabs		1	0	1	1	0	0	1	0	3	1	5	1	14	1.2
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	0	0	1	0	0	0	0	1	0.1
COST	Ostracods		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
CSHR	Shrimps/Mysids		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BOTH	Bivalves			0	0	0	1	0	0	1	0	0	1	0	4	0.3
GOTH	Gastropous			0	2	1		0	2	2		2	0		13	1.1
EHOI	EZ <i>Fellaster zealandiae</i> OL Holuthurians			0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	OL Holuthurians IEM Nemerteans			0	1	1	1	1	0	0	0	0	0	0	5	0.4
POTH	NEM Nemerteans DTH Polychaetes			ō	0	1	0	0	1	Ő	Ő	0	Ő	1	3	0.3
OOLIG	OLIG Oligochaetes			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	DFLAT Flatworms			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	DEDW Edwardsia			0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			81	78	70	108	103	80	132	178	63	68	46	147	1154	96.2

OB April 2001

					COR	E NUN	BER												
INDICAT	OR SPECIES		1	2	3	5	6	8	9	10	11	13	14	15	16	18	19	TOTAL	MEAN
AMPHIP	ODS																		
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Phoxocephalidae	017E	4	0	0	1	4	0	3	3	0	8	4	0	2	-	-	37	2.5
BAR	Arthritica bifurca	-2	2	0	0	0	0	1	0	0	0	0	0	0	2	1	0	6	0.4
DAD		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŏ	0.0
		Total	2	0	0	0	0	1	0	0	0	0	0	0	2	1	0	6	0.4
BAS	Austrovenus stutchburyi	<5	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0.1
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	2	0.1
BML	Macamona liliana	<5	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	4	0.3
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15 Total	0	0	0	1	1	0	1	0	0	1	0	0	0	0	2	7	0.2
BNH	Nucula hartvigiana	<2	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	2	0.1
2	na chigh an a	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
		Total	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	3	0.2
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	4	0	2	0	0	0	0	0	0	2	0	1	2	2	13	0.9
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANO	I otal	0	4	0	2	0	0	0	0	0	0	2	0	1	2	2	13	0.9
COMAC	Colurostulis Iomurum		2	1	1	6	2	2	2	1	2	2	1	7	4	5	2	42	2.0
GASTR			3	1		0	2	2	2		3	2	1	/	4	5	3	43	2.9
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ŏ	0.0
OTHER			-		-			-		-			-			-		-	
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	IAETES																		
PAA	Aquilaspio aucklandica		6	3	1	8	5	2	5	5	5	2	2	3	6	9	2	64	4.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		1	0	2	9	10	2	15	1	2	5	7	0	6	0	3	63	4.2
PBOC	Polydorids (Boccardia syrtis)		0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	2	0.1
PCOS	Cossura sp.		18	19	34	27	35	13	40	36	35	24	15	11	31	21	26	385	25.7
PEUC	Eucrione sp.		4	3	2	4	0	1	0	5 1	4	1	0	1	4	1	8	5U 19	3.3
	Glvcera sp.		1	0	1	1	0	1	0	0	2	2	0	1	1	0	0	8	0.5
PHF	Capitellidae (Heteromastus f	iliformis)	13	11	8	17	8	18	16	14	12	9	12	8	9	8	6	169	11.3
PMD	Magelona dakini	/	1	1	0	0	0	0	2	0	0	0	0	0	0	0	0	4	0.3
PNIC	Nereidae		4	4	6	4	5	3	2	2	4	0	5	1	3	2	5	50	3.3
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		3	3	1	4	4	2	17	2	1	1	0	0	0	2	1	41	2.7
NON IN	DICATOR SPECIES																		
CAMPH	Amphipods		2	4	3	4	4	1	0	4	1	1	4	1	3	5	6	43	2.9
CCRAB	Crabs		0	1	0	0	2	0	1	1	0	1	1	0	2	1	1	11	0.7
CLOW	Cumaceans		1	0	0	0	0	0	0	2	0	0	0	0	2	0	0	5	0.1
COST	Ostracods		0	0	2	0	1	0	0	1	0	5	1	0	0	1	0	11	0.7
CSHR	Shrimps/Mysids		õ	0	0	0	0	0	0	0	o	1	0	2	2	0	0	5	0.3
COTH	Other Crustaceans		0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	4	0.3
BOTH	Bivalves		0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	2	0.1
GOTH	Gastropods		3	4	3	3	2	3	0	1	1	1	1	0	2	1	3	28	1.9
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	0	1	0	0		0	0	0	0	0	1	0	3	0.2
POTH	Polychaetes		7	4	2	3	2	7	1	1	2	3	3	3	2	0	2	42	2.8
	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER	Misc. Other [Phoronid]		ő	1	0	1	ō	ő	ŏ	o	ō	0	o	0	0	0	0	2	0.1
TOTAL			75	69	67	97	94	58	116	81	73	68	59	43	85	63	74	1122	93.5

OB July 2001

					COR		IBER									
INDICAT	OR SPECIES		1	2	3	4	5	6	7	8	9	10	11	15	TOTAL	MEAN
AMPHIP	PODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	Phoxocephandae	SIZE	1	1	1	0	4	4	0	3	4	2	3	0	30	2.9
BAB	Arthritica bifurca	512L	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
DAD	Altinuca biluica	>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
		Total	0	0	0 0	1	0 0	0	0	0	0 0	0	0	0	1	0.1
BAS	Austrovenus stutchburvi	<5	0	0	0	1	0	0	4	0	0	0	0	0	5	0.4
-		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	1	0	0	4	0	0	0	0	0	5	0.4
BML	Macamona liliana	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	1	0	0	0	0	2	0	3	0.3
		Total	0	0	0	0	0	1	0	0	0	0	2	0	3	0.3
BNH	Nucula hartvigiana	<2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
	0 // / /	l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
вра	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15 \\15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHI	Theora lubrica	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
5		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CUMAC	EANS															
CCL	Colurostylis lemurum		2	2	1	3	3	0	0	1	0	2	4	7	25	2.1
GASTR	OPODS															
GCA	Cominella adspera		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																
OAN	Anthopleura aureoradiata		0	0	1	0	0	0	0	0	0	0	0	0	1	0.1
POLYCH	AETES															
PAA	Aquilaspio aucklandica		0	1	0	0	0	0	5	4	1	2	0	0	13	1.1
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	2	0	0	0	0	0	0	0	0	0	2	0.2
PAR	Aricidea sp.		0	0	0	0	0	0	1	0	3	1	0	3	8	0.7
PCOS	Cossura sp		11	6	18	1	14	11	37	46	12	15	18	25	244	20.3
PEUC	Euchone sp.		0	0	0	0	0	0	0	0	0	0	0	1	1	0.1
PGE	Goniada sp.		1	0	0	0	0	0	0	1	3	1	1	2	9	0.8
PGLY	Glycera sp.		0	1	0	0	0	1	0	0	0	0	0	0	2	0.2
PHF	Capitellidae (Heteromastus f	iliformis)	4	0	10	0	0	1	14	2	6	4	1	5	47	3.9
PMD	Magelona dakini		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
PNIC	Nereidae		3	2	1	0	1	0	1	3	1	0	2	2	16	1.3
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		1	1	0	0	0	0	2	0	0	1	0	0	5	0.4
NON IN	Amphinede		-	<u> </u>				<u> </u>				6			10	0.0
CORAD	Amphipoas			0	1		2	1	1	0	2	0	1	3	10	0.8
CCLIM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	1	10	0.0
CISO	Isopods		0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
COST	Ostracods		õ	Ő	3	0	Ő	1	Ő	õ	2	0	1	0	7	0.6
CSHR	Shrimps/Mysids		0	0	0	0	0	1	1	0	0	0	1	1	4	0.3
сотн	Other Crustaceans		4	0	0	0	0	0	0	3	0	0	0	0	7	0.6
BOTH	Bivalves		0	0	0	0	0	0	3	0	1	0	0	0	4	0.3
GOTH	Gastropods		8	4	6	2	3	7	1	3	3	8	4	2	51	4.3
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DNEM	Nemerteans		1	1	0	0	0	0		1	0	0	1	0	5	0.4
00110	Oligochaetes		8 n	3	4	0	0	4	0	0	2	0	0	0	35	2.9
OFI AT	Flatworms		3	0	1	0	n	0	0	2	0	0	0	0	6	0.5
OEDW	Edwardsia		0	ō	0	ō	ō	ō	ō	0	0	0	0	0	0	0.0
OTHER	Misc. Other		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ΤΟΤΑΙ			48	22	50	10	30	32	79	73	70	43	42	61	560	46 7

OB October 2001

					COR		IBER									
INDICAT	OR SPECIES		1	2	3	4	5	6	9	10	11	12	14	15	TOTAL	MEAN
AMPHIP	PODS															
ACOR	Corophiidae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
APHOX	Phoxocephalidae		9	7	3	6	5	5	1	3	4	2	4	5	54	4.5
BIVALV	ES	SIZE														
BAB	Arthritica bifurca	<2	0	0	0	0	0	1	0	0	0	0	1	7	9	0.8
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DA0	A	l otal	0	0	0	0	0	1	0	0	0	0	1	/	9	0.8
BAS	Austrovenus stutchburyi	<0	0	0	0	0	0	0	0	2	2	0	4	0	29	2.4
		>5 Total	1	0	0	6	0	0	1	2	2	0	4	13	29	2.4
BMI	Macamona liliana	<5	0	0	0	2	0	0	0	0	0	0	2	1		0.4
DIVIL	madamona mana	5-15	0	0	0	0	Ő	0	0	Ő	0	0	0	0	0 0	0.0
		>15	0	0	0	0	2	0	0	1	1	1	0	1	6	0.5
		Total	0	0	0	2	2	0	0	1	1	1	2	2	11	0.9
BNH	Nucula hartvigiana	<2	0	0	0	0	0	0	0	1	0	0	1	0	2	0.2
		>2	1	0	0	0	0	0	0	0	0	0	0	0	1	0.1
		Total	1	0	0	0	0	0	0	1	0	0	1	0	3	0.3
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTI U		l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	l heora lubrica	<5	0	0	0	1	0	0	0	0	0	0	0	0	1	0.1
		>5 Total	0	0	0	1	0	0	0	0	0	0	0	0	1	0.0
CUMAC	FANS	Total	0	0	0	-	0	0	0	0	0	0	0	0	-	0.1
CCI	Colurostylis lemurum		1	0	0	4	1	2	1	2	0	2	0	0	13	11
GASTRO	OPODS					-	-	~	-	~	0	2		-	15	
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	AETES															
PAA	Aquilaspio aucklandica		2	1	1	1	1	0	0	0	3	1	0	6	16	1.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
PAR	Aricidea sp.		3	0	1	2	0	1	0	1	2	4	0	0	14	1.2
PBOC	Polydorids (Boccardia syrtis)		0	0	0	1	0	0	0	0	1	0	0	0	2	0.2
PCOS	Cossura sp.		23	10	13	30	0	15	26	46	32	44	30	2	271	22.6
PEUC	Euchone sp.		0	0	1	1	0	0	0	0	0	0	0	0	2	0.2
PGE	Goniada sp.		2	1	0	0	1	0	1	0	3	1		1	12	1.0
	Capitellidae (Heteromastus fi	iliformis)	5	16	5	5	10	2	6	9	15	1	5	1/	102	8.5
PMD	Magelona dakini	linorrino)	0	0	0	0	0	1	0	0	0	0	0	0	1	0.1
PNIC	Nereidae		3	1	1	3	2	1	6	5	0	3	2	4	31	2.6
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		0	0	0	0	0	0	1	0	0	0	0	0	1	0.1
NON IN	ICATOR SPECIES															
CAMPH	Amphipods		0	0	0	2	2	0	4	0	0	2	1	2	13	1.1
CCRAB	Crabs		2	1	0	1	2	1	0	0	0	0	0	1	8	0.7
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	1	0	1	0	1		3	0	7	0.6
COST	Ostracods		1	1	0	0	0	0	0	0	0	1	0	0	3	0.3
СОТН	Other Crustaceans		5	0	0	0	0	0	0	0	0	0	0	0	5	0.3
вотн	Bivalves		0	0	2	3	0	0	1	2	2	0	0	1	11	0.9
GOTH	Gastropods		3	1	2	3	1	4	4	1	4	Ő	3	1	27	2.3
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		0	0	0	1	0	1	0	0	0	1	0	0	3	0.3
POTH	Polychaetes		3	1	3	1	1	2	0	1	0	2	0	0	14	1.2
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFUED	Euwarasia Miso Othor		0	0	0	0	0	0	0	0	0	0	1	0	1	0.0
TOTAL	WIGG. OUIEI			41	24	74	20	44	5	76	71	70	50		1	0.1

OB January 2002

					COR	E NUN	IBER									
INDICAT	OR SPECIES		2	3	4	5	6	7	8	9	10	11	13	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	11	0	0	3	1	2	2	1	0	20	1.7
APHOX	Phoxocephalidae		3	2	4	4	4	1	8	15	7	8	2	3	61	5.1
BIVALV	ES	SIZE														
BAB	Arthritica bifurca	<2	0	0	1	0	0	1	2	0	0	2	2	0	8	0.7
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DA0	A	l otal	0	0	1	0	0	1	2	0	0	2	2	0	8	0.7
BAS	Austrovenus stutchburyl	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	2	0	2	0.2
BMI	Macamona liliana	<5	3	1	4	0	1	0	0	0	8	3	3	6	29	2.4
DIVIL		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	1	0	0	1	1	1	0	0	1	0	4	1	10	0.8
		Total	4	1	4	1	2	1	0	0	9	3	7	7	39	3.3
BNH	Nucula hartvigiana	<2	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
		>2	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
DTI U		l otal	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BIHL	l heora lubrica	<5	0	0	0	1	0	1	1	4	3	2	1	3	16	1.3
		>5 Total	0	0	2	1	0	1	2	4	2	2	2	2	22	0.5
CUMAC	EANG	TOTAL	0	0	2	-	0	-	2	4	5	2	2	5	~~~	1.0
COMAC	Colurostylis lemurum		5	0	1	0	3	0	1	2	1	2	0	1	16	13
GASTRO			5	0	-	0	3	0	-	2		2	0	-	10	1.5
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	Ő	0	0	Ő	0	0	0	0	0 0	0.0
OTHER			-	-	-	-	-	-	-	-	-	-	-	-	-	
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	AETES															
PAA	Aquilaspio aucklandica		3	1	4	2	3	3	0	6	2	3	0	0	27	2.3
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		0	9	5	1	1	2	1	2	3	5	2	2	33	2.8
PBOC	Polydorids (Boccardia syrtis)		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PCOS	Cossura sp.		22	2	14	30	13	47	34	46	22	32	32	16	310	25.8
PEUC	Euchone sp.		0	2	2	0	1	0	0	6	2	0	0	0	13	1.1
PGE	Goniada sp.		0	1	1	1	0	1	1	1	0	2	2	0	8 10	0.7
	Capitellidae (Heteromastus fi	iliformis)	1/	1/	23	16	12	12	13	6	11	21	6	5	153	12.8
PMD	Magelona dakini	11011113)	0	1	1	0	0	0	0	1	0	0	0	0	3	0.3
PNIC	Nereidae		1	1	0	1	0	2	2	2	0	0	1	1	11	0.9
POP	Orbinia papillosa		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PPAR	Paraonidae		2	1	1	2	2	2	1	1	0	1	1	0	14	1.2
NON IN	ICATOR SPECIES															
CAMPH	Amphipods		1	0	0	0	0	0	0	0	0	1	0	4	6	0.5
CCRAB	Crabs		0	0	0	0	0	2	2	1	0	0	0	4	9	0.8
CCUM	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
CISO	Isopods		0	0	0	0	0	0	0	0	0	0	1	0	1	0.1
COST	Ostracods Chuimne (Muside		0	1	0	1	0	0	2	0	0	0	0	0	4	0.3
СОТН	Other Crustacoope		1	0	0	0	2	0	0	0	0	0	5	0	3 11	0.3
вотн	Bivalves		4	5	2	5	8	1	6	6	6	6	6	4	59	4.9
GOTH	Gastropods		1	2	3	1	0	3	ō	2	1	0	3	2	18	1.5
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
ONEM	Nemerteans		1	1	3	1	6	0	0	2	3	1	0	0	18	1.5
POTH	Polychaetes		4	9	3	3	3	3	6	3	3	1	1	2	41	3.4
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			70	55	74	91	65	82	84	108	79	0	77	56	022	76.9

OB April 2002

					COR	E NUN	IBER									
INDICAT	OR SPECIES		1	3	4	7	8	9	10	11	12	13	14	15	TOTAL	MEAN
AMPHIP	ODS															
ACOR	Corophiidae		0	0	0	0	4	0	0	0	0	0	0	0	4	0.3
APHOX	Phoxocephalidae		2	0	4	1	0	0	1	3	1	0	0	1	13	1.1
BIVALV	ES	SIZE														
BAB	Arthritica bifurca	<2	0	0	2	3	0	1	1	0	2	1	1	1	12	1.0
		Total	0	0	2	3	0	1	1	0	2	1	1	1	12	1.0
BAS	Austrovenus stutchburvi	<5	0	1	0	0	0	0	0	0	0	0	0	1	2	0.2
		>5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	1	0	0	0	0	0	0	0	0	0	1	2	0.2
BML	Macamona liliana	<5	0	0	1	0	0	0	0	3	2	1	1	1	9	0.8
		5-15	0	0	0	0	0	0	0	0	1	0	0	0	1	0.1
		>15	0	1	1	0	0	0	0	0	1	0	2	0	5	0.4
DALL	Number to set initiate	Total	0	1	2	0	0	0	0	3	4	1	3	1	15	1.3
BINH	Nucula nartvigiana	<2	0	0	0	0	0	1	0	0	1	0	0	0	3	0.3
		Total	0	0	0	1	0	1	0	1	1	0	0	1	5	0.2
BPA	Paphies australis	<5	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		5-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		>15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
		Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
BTHL	Theora lubrica	<5	0	0	2	0	2	0	4	7	2	5	1	6	29	2.4
		>5	0	0	0	0	1	2	1	0	1	0	0	1	6	0.5
CUMAC		I otal	0	0	2	0	3	2	5		3	5	1	1	35	2.9
COMAC	Colurostulio lomurum		0	4	2	5	0	1	1	1	0	0	0	4	01	10
GASTR			0	4	3	5	2	1	1	1	0	0	0	4	21	1.0
GCA	Cominella adspera		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
GNHE	Notoacmea sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OTHER																
OAN	Anthopleura aureoradiata		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
POLYCH	AETES															
PAA	Aquilaspio aucklandica		1	1	5	2	2	3	4	5	3	3	1	0	30	2.5
PAGL	Aglaophamus sp.		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAO	Aonides oxycephala		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
PAR	Aricidea sp.		2	2	0	1	1	0	1	2	2	1	0	1	13	1.1
PEOC	Cossura sp		13	33	17	1	30	24	10	51	10	18	13	38	345	28.8
PEUC	Euchone sp.		0	1	0	1	1	0	0	0	0	0	0	0	3	0.3
PGE	Goniada sp.		0	1	0	0	0	0	1	0	2	1	1	1	7	0.6
PGLY	Glycera sp.		2	0	0	0	0	0	0	1	1	1	0	0	5	0.4
PHF	Capitellidae (Heteromastus fi	iliformis)	18	12	8	14	5	9	6	14	36	9	4	13	148	12.3
PMD	Magelona dakini		0	1	1	0	0	0	0	1	3	0	1	0	7	0.6
PNIC	Nereidae		0	2	2	5	4	2	2	3	7	4	3	2	36	3.0
	Orbinia papillosa Paraopidao		1	0	0	1	0	0	0	1	0	0	0	0	0	0.0
				0	0						0	0	0	0	3	0.4
CAMPH	Amphipods		0	0	0	0	0	0	0	1	0	2	0	2	5	0.4
CCRAB	Crabs		0	1	0	1	0	0	1	1	1	0	1	0	6	0.5
ссим	Cumaceans		0	0	0	0	0	0	0	0	0	0	0	2	2	0.2
CISO	Isopods		0	1	0	0	0	0	0	0	0	0	0	0	1	0.1
COST	Ostracods		1	2	0	0	0	0	0	2	0	0	0	2	7	0.6
CSHR	Shrimps/Mysids		0	0	0	0	1	0	0	0	0	0	0	0	1	0.1
COTH	Other Crustaceans		0	0	0	0	0	0	0	0	1	0	0	1	2	0.2
GOTH	Gastropods		U R	2	6	1	3	0	1	0	5	1	2	3	32	0.3 2 7
EFEZ	Fellaster zealandiae		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
EHOL	Holuthurians		õ	Ő	Ő	Ő	Ő	ō	ō	Ő	ō	0	Ő	0	0	0.0
ONEM	Nemerteans		0	0	0	0	1	1	0	1	1	0	0	0	4	0.3
POTH	Polychaetes		6	4	3	5	5	4	0	1	3	1	1	4	37	3.1
OOLIG	Oligochaetes		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OFLAT	Flatworms		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
OEDW	Edwardsia Mise Other [Pherenid]		0	0	0	0	0	0	0	0	0	0	0	0	0	0.0
TOTAL			54	69	55	82	74	49	34	100	128	49	33	85	4 812	67.7

Appendix 3 - Dry weight of shell-hash

April 2001

Southern Firth of Thames

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)	Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
KA	1	6.5	153.4	146.9	TU	1	6.6	434.0	427.4
	2	6.5	209.3	202.8		2	6.5	88.9	82.4
	3	6.5	220.9	214.4		3	6.5	129.1	122.6
	4	6.5	114.0	107.5		4	6.5	93.7	87.2
	5	6.5	132.3	125.8		6	6.5	86.2	79.7
	6	6.5	166.8	160.3		8	6.4	119.5	113.1
	7	6.5	154.2	147.7		11	6.4	75.8	69.4
	10	6.6	348.0	341.4		12	6.4	/3.5	67.1
	12	6.6	147.6	141.0		13	6.5	139.6	133.1
	14	6.5	92.1	85.6		14	6.6	143.6	137.0
	15	6.6	180.6	174.0		15	6.5	107.6	101.1
	16	6.5	162.7	156.2		17	6.4	223.1	216.7
	17	6.4	190.2	183.8		18	6.6	111.1	104.5
	18	6.4	212.9	206.5		19	6.5	135.5	129.0
	19	6.5	168.2	161.7		20	6.4	125.5	119.1
GC	1	14.0	907.7	893.7	HB	1	6.5	260.4	253.9
	2	14.1	945.5	931.4		2	6.5	1/5.2	168.7
	3	14.2	1189.4	1175.2		3	6.5	108.7	102.2
	4	14.0	1082.6	1068.6		4	6.4	129.9	123.5
	5	14.3	903.8	889.5		5	6.5	117.3	110.8
	/	13.8	1292.8	1279.0		/	6.6	281.4	274.8
	9	13.8	704.5	690.7		9	6.4	197.6	191.2
	10	14.1	1095.8	1081.7		10	6.7	187.6	180.9
	11	14.1	1128.6	1114.5		12	6.8	120.1	113.3
	12	14.2	659.7	645.5		14	6.5	192.5	186.0
	14	13.8	1146.0	1132.2		16	6.5	259.1	252.6
	16	14.1	589.0	574.9		17	6.5	213.3	206.8
	17	13.8	516.8	503.0		18	6.4	350.1	343.7
	18	13.9	570.8	556.9		19	6.6	257.1	250.5
	19	14.3	816.8	802.5		20	6.5	1/9.6	173.1
IP	4	6.4	39.0	32.6	X		no sa	imple	
	5	0.0	31.0	24.4			10 52	umple	
	5	0.5	22.0	21.0			10 52	umple	
	/	0.0	30.4	31.0			10 52	umple	
	0	0.0	017.0	011 6			110 52	unpie	
	9	0.3	317.9	10.0			10 52	umple	
	10	0.5	10.7	10.2			10 58	umple	
	10	0.7	37.7	31.0			110 52	unple	
	12	0.0	44.9	30.3			110 52	unple	
	13	6.0	22.9	20.3			10 50	ample	
	14	6.4	22.3	10.9			110 52	unple	
	13	6.4	00 0	40.0			110 52	unple	
	18	6.7	25.4	18.7			10.50	ample	
	20	6.6	44.5	37.9			no se	mple	
MI	20	6.5	233.0	226.5	WI	1	6.5	85.4	78.9
	5	6.5	230.6	224 1	•••	2	6.6	257.0	250.4
	6	6.5	232.3	225.8		4	67	307.5	300.8
	8	6.4	294 7	288.3		5	6.6	247.8	241.2
	10	6.5	206.1	199.6		6	6.5	206.9	200.4
	11	6.5	186.4	179.9		8	6.4	115.9	109.5
	12	6.5	251.4	244.9		9	6.5	117.1	110.6
	13	6.5	234.7	228.2		10	6.4	157.8	151.4
	14	6.5	298.0	291.5		11	6.5	145.8	139.3
	15	6.7	219.6	212.9		13	6.5	164.3	157.8
	16	6.4	212.5	206.1		14	6.4	181.8	175.4
	17	6.7	276.8	270.1		15	6.5	133.0	126.5
	18	6.7	268.3	261.6		17	6.5	183.2	176.7
	19	6.5	221.4	214.9		18	6.6	158.4	151.8
	20	6.6	293.8	287.2		20	6.8	190.1	183.3
KB	1	6.5	147.4	140.9	OB	1	6.6	86.5	79.9
	2	6.6	182.7	176.1		2	6.5	68.7	62.2
	3	6.5	159.9	153.4		3	6.6	63.5	56.9
	4	6.7	179.1	172.4		5	6.4	134.7	128.3
	5	6.6	149.3	142.7		6	6.5	61.5	55.0
	6	6.7	153.3	146.6		8	6.6	85.5	78.9
	7	6.6	138.9	132.3		9	6.5	59.7	53.2
	8	6.3	204.3	198.0		10	6.6	44.1	37.5
	9	6.4	128.9	122.5		11	6.6	40.5	33.9
	11	6.4	164.7	158.3		13	6.6	42.6	36.0
	13	6.7	167.4	160.7		14	6.5	110.8	104.3
	14	6.6	120.0	113.4		15	6.5	46.8	40.3
	16	6.6	149.4	142.8		16	6.6	53.1	46.5
	17	6.7	130.9	124.2		18	6.5	99.9	93.4
	20	6.4	135.8	129.4		19	6.5	99.4	92.9

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
MI	1	13.7	261.3	247.6
	2	13.9	311.1	297.2
	3	13.8	304.2	290.4
	4	13.8	262.2	248.4
	5	13.7	338.1	324.4
	6	13.9	282.0	268.1
	7	13.6	226.8	213.2
	8	13.8	167.0	153.2
	9	14.0	194.7	180.7
	10	13.6	235.5	221.9
	11	14.1	197.8	183.7
	12	14.1	264.8	250.7
	13	14.0	296.1	282.1
	14	14.0	329.0	315.0
	15	13.8	209.8	196.0
KB	1	6.6	203.4	196.8
	2	6.7	231.2	224.5
	3	6.8	211.3	204.5
	4	6.7	185.8	179.1
	5	6.6	152.9	146.3
	6	6.7	110.1	103.4
	7	6.7	179.8	173.1
	8	6.5	157.6	151.1
	9	6.3	145.9	139.6
	10	6.4	185.6	179.2
	11	6.4	175.6	169.2
	12	6.6	206.5	199.9
	13	6.5	147.3	140.8
	14	6.7	138.5	131.8
	15	6.7	137.7	131.0

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
WI	1	13.7	106.4	92.7
	2	6.8	149.2	142.4
	3	6.7	135.4	128.7
	4	13.6	96.2	82.6
	5	6.7	89.7	83.0
	6	13.8	127.5	113.7
	7	6.6	99.5	92.9
	8	6.5	92.5	86.0
	9	6.6	201.0	194.4
	10	6.4	154.4	148.0
	11	14.0	124.1	110.1
	12	13.7	214.3	200.6
	13	13.9	179.2	165.3
	14	6.7	292.0	285.3
	15	14.1	146.8	132.7
OB	1	13.7	81.8	68.1
	2	13.8	79.7	65.9
	3	13.7	92.6	78.9
	4	13.7	64.4	50.7
	5	13.8	73.0	59.2
	6	13.8	81.6	67.8
	7	13.9	75.8	61.9
	8	13.8	73.3	59.5
	9	6.3	30.9	24.6
	10	6.7	63.2	56.5
	11	6.6	69.5	62.9
	12	6.7	56.7	50.0
	13	6.5	64.6	58.1
	14	6.7	44.7	38.0
	15	6.4	45.0	38.6

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)	Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
KA	1	6.5	55.5	49.0	TU	1	9.6	119.2	109.6
	2	6.7	95.3	88.6		2	9.6	107.3	97.7
	3	6.8	72.7	65.9		3	9.9	188.0	178.1
	5	6.8	121.4	114.6		4	10.0	87.9	77.9
	6	6.5	37.9	31.4		5	9.9	149.7	139.8
	8	6.5	54.9	48.4		6	9.9	121.2	111.3
	9	6.7	27.8	21.1		8	9.6	137.8	128.2
	10	6.7	69.4	62.7		9	6.6	101.5	94.9
	11	6.5	108.1	101.6		10	9.6	115.2	105.6
	13	6.8	71.1	64.3		11	9.6	188.6	179.0
	14	6.7	40.3	33.6		14	9.6	104.7	95.1
	15	6.7	60.5	53.8		15	9.6	96.3	86.7
GC	1	13.7	1190.6	1176.9	HB	1	9.9	251.7	241.8
	3	27.9	1531.9	1504.0		2	9.7	147.1	137.4
	4	14.1	1452.7	1438.6		3	9.9	222.9	213.0
	5	14.1	767.6	753.5		4	9.9	129.0	119.1
	6	28.0	1779.6	1751.6		5	9.8	134.6	124.8
	7	14.0	779.2	765.2		6	10.0	163.5	153.5
	8	14.0	729.3	/15.3		7	10.0	145.5	135.5
	10	13.8	1073.2	1059.4		8	9.6	254.5	244.9
	11	27.6	1575.0	1547.4		9	10.0	114.6	104.6
	12	10.0	274.4	264.4		11	9.9	314.6	304.7
	13	10.1	276.8	266.7		12	10.1	44.1	34.0
	15	14.4	1188.3	11/3.9		15	10.5	139.1	128.6
IP	1	6.6	30.5	23.9	X	1	9.8	148.8	139.0
	4	0.0	55.6	40.0		2	9.0	197.4	107.0
	5	6.7	04.1 27.0	57.4 20.1		3	9.0	140.4	141 7
	7	6.7	308.3	301.6		4	9.0	122.8	141.7
	8	6.5	62.9	56.4		6	9.0	151.4	141.6
	9	6.5	35.0	28.5		8	10.0	152.9	1/2 0
	10	6.8	37.3	30.5		9	13.9	455.6	441 7
	10	6.7	241.2	234.5		10	13.9	312.7	298.8
	12	6.7	325.2	318.5		11	9.6	302.5	292.9
	13	6.6	351.5	344.9		12	13.8	510.7	496.9
	15	6.9	78.6	71.7		15	9.6	202.4	192.8
MI	1	9.8	272.0	262.2	WI	1	13.9	251.5	237.6
	2	9.9	192.3	182.4		5	6.7	152.3	145.6
	4	9.7	252.7	243.0		6	7.3	110.7	103.4
	5	9.8	230.7	220.9		7	6.8	104.3	97.5
	6	10.0	247.3	237.3		8	6.7	98.6	91.9
	8	10.4	247.9	237.5		9	6.8	107.3	100.5
	9	14.4	453.8	439.4		10	6.9	133.5	126.6
	10	9.9	262.2	252.3		11	6.7	122.7	116.0
	11	9.7	350.0	340.3		12	6.4	123.4	117.0
	12	9.7	234.7	225.0		13	6.8	100.7	93.9
	13	9.8	297.2	287.4		14	14.1	266.5	252.4
	14	9.7	240.9	231.2		15	10.1	159.4	149.3
KB	3	14.1	213.9	199.8	OB	1	9.9	121.4	111.5
	5	13.9	174.2	160.3		2	9.6	103.3	93.7
	6	6.7	210.8	204.1		3	9.6	80.2	70.6
	7	13.7	233.8	220.1		4	9.6	52.8	43.2
	8	13.8	171.5	157.7		5	9.7	79.6	69.9
	9	13.7	232.7	219.0		6	9.8	70.6	60.8
	10	14.0	173.5	159.5		7	6.5	37.1	30.6
	11	6.3	127.6	121.3		9	6.7	47.8	41.1
	12	6.7	150.3	143.6		10	6.6	39.9	33.3
	13	13.8	136.0	122.2		11	7.0	50.1	43.1
	14	13.7	120.2	106.5		12	6.8	220.4	213.6
	15	14.1	198.7	184.6		14	14.1	70.1	56.0

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
MI	1	9.9	242.7	232.8
	2	10.3	236.1	225.8
	3	13.8	412.2	398.4
	5	13.9	368.7	354.8
	6	10.5	203.3	192.8
	8	10.3	213.7	203.4
	9	10.0	318.7	308.7
	10	9.9	304.9	295.0
	12	9.7	267.5	257.8
	13	10.0	233.2	223.2
	14	9.8	290.7	280.9
	15	10.9	288.0	277.1
KB	1	6.3	161.7	155.4
	2	6.7	231.5	224.8
	3	6.5	152.8	146.3
	4	9.7	196.5	186.8
	5	9.7	191.5	181.8
	6	10.1	165.9	155.8
	8	10.1	196.3	186.2
	11	10.0	222.0	212.0
	12	10.3	229.2	218.9
	13	10.4	309.6	299.2
	14	10.6	186.0	175.4
	15	10.2	164.7	154.5

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
WI	1	10.3	90.9	80.6
	2	9.7	204.6	194.9
	3	10.0	335.2	325.2
	4	10.7	120.0	109.3
	5	9.7	131.3	121.6
	6	9.8	186.3	176.5
	7	10.1	170.6	160.5
	10	9.6	189.2	179.6
	12	9.6	85.4	75.8
	13	9.6	146.8	137.2
	14	9.9	211.9	202.0
	15	9.9	212.9	203.0
OB	2	6.5	82.9	76.4
	3	6.7	87.8	81.1
	4	6.6	86.0	79.4
	5	6.7	86.2	79.5
	6	6.9	123.9	117.0
	7	6.7	64.9	58.2
	8	6.7	65.6	58.9
	9	6.8	71.8	65.0
	10	6.6	33.4	26.8
	11	6.7	57.9	51.2
	13	6.8	34.5	27.7
	15	6.8	51.0	44.2

Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)	Site	Sample No.	Initial tray weight	Final weight	Shell hash weight (g)
KA	2	10.1	43.9	33.8	TU	1	9.9	378.7	368.8
	3	10.2	34.8	24.6		2	9.8	109.0	99.2
	4	9.8	102.1	92.3		3	9.6	125.5	115.9
	5	10.2	37.8	27.6		4	9.3	181.3	172.0
	6	9.9	80.1	70.2		5	9.6	91.1	81.5
	7	9.7	65.2	55.5		6	9.6	116.5	106.9
	8	9.7	79.0	69.3		7	7.1	303.0	295.9
	9	10.2	60.8	50.6		8	6.7	108.4	101.7
	10	9.7	59.7	50.0		10	6.7	77.6	70.9
	12	9.9	69.2	59.3		11	6.9	87.4	80.5
	13	10.1	67.3	57.2		12	6.8	170.7	163.9
	14	9.6	61.7	52.1		14	6.8	128.5	121.7
GC	1	14.2	940.1	925.9	HB	1	9.7	208.6	198.9
	2	27.7	1587.5	1559.8		3	9.7	144.8	135.1
	3	23.8	1528.8	1505.0		4	10.3	114.7	104.4
	4	27.8	1915.7	1887.9		5	9.7	106.9	97.2
	5	14.0	754.5	740.5		6	9.8	246.8	237.0
	6	14.1	1211.2	1197.1		7	9.6	168.5	158.9
	8	13.9	1144.2	1130.3		8	10.3	132.2	121.9
	9	28.1	1721 7	1693.6		11	10.0	223.3	213.3
	10	28.3	1626 1	1597.8		12	10.0	284 5	274.5
	11	27.8	2172 1	2144.3		13	9.9	201.3	191.4
	13	14.0	717 1	703.1		14	9.8	237.0	227.2
	15	14.3	991.0	976 7		15	9.8	183.5	173 7
тр	10	9.8	395.6	385.8	X	1	9.5	169.4	159.9
	2	10.3	187.9	177.6	Λ	4	10.5	329.5	319.0
	3	10.0	209.1	199.1		5	10.3	170.6	160.3
	5	10.0	203.1	252 4		6	10.0	201.5	101.0
	5	13.8	720.6	706.8		7	0.1	201.5	361.2
	7	13.8	1156 5	11/2 7		8	9.9	254.5	244.8
	0	0.0	100.0	100.0		10	9.7	170.1	160.2
	10	9.9	190.1	100.2		10	9.9	170.1	100.2
	10	10.2	93.5	101 5		10	9.9	107.1	127.2
	10	9.9	141.4	131.5		12	9.0	104.0	101.0
	14	9.9	230.0	220.7		13	10.1	134.7	124.0
	14	10.2	372.3	302.1		14	10.0	96.0	86.0
N 41	15	9.9	404.0	394.1	14/1	15	10.1	100.2	90.1
IVII	1	9.8	141.8	132.0	VVI	1	9.6	166.2	156.6
	2	9.8	242.4	232.6		3	10.2	247.2	237.0
	3	10.1	268.3	258.2		4	9.9	150.5	140.6
	4	1.1	250.0	248.9		5	10.1	225.8	215.7
	6	9.7	1/1.5	101.8		6	9.8	92.6	82.8
	(10.0	198.5	188.5		1	10.5	105.8	95.3
	8	10.0	281.2	2/1.2		9	9.9	128.0	118.1
	9	9.9	318.4	308.5		10	9.9	86.4	/6.5
	11	9.9	367.7	357.8		11	9.8	135.6	125.8
	12	9.9	236.0	226.1		12	9.9	112.9	103.0
	13	9.8	359.5	349.7		13	10.0	97.5	87.5
	14	10.1	281.1	271.0		15	9.9	114.0	104.1
ĸВ	1	6.7	206.8	200.1	OB	1	9.9	106.6	96.7
	2	7.1	216.2	209.1		3	10.0	74.3	64.3
	4	6.9	226.1	219.2		4	10.0	60.3	50.3
	5	7.0	229.7	222.7		7	9.6	28.3	18.7
	6	6.8	169.8	163.0		8	10.0	79.1	69.1
	8	6.6	154.2	147.6		9	9.8	46.4	36.6
	10	6.7	218.1	211.4		10	9.9	53.4	43.5
	11	6.9	208.3	201.4		11	9.7	85.7	76.0
	12	6.5	236.2	229.7		12	9.7	96.5	86.8
	13	9.9	175.4	165.5		13	9.9	55.3	45.4
	14	9.7	239.4	229.7		14	9.9	97.8	87.9

Appendix 4 – Sediment organic matter content

Southern Firth of Thames

Whaingaroa Harbour

April 2001

	Total Organic Carbon	Dry Matter g/100g as	Total Nitrogen		Total Organic Carbon	Dry Matter g/100g as	Total Nitrogen
	g/100g dry wt	rcvd	g/100g dry wt		g/100g dry wt	rcvd	g/100g dry wt
KA	0.35	67.6	0.07	TU	0.42	68.4	0.06
	0.27	69.5	0.05		0.38	72.1	0.08
	0.34	65.8	0.07		0.53	67.3	0.08
	0.31	65.6	0.07		0.43	68.7	0.07
	0.30	66.8	0.06		0.53	66.6	0.08
GC	0.42	64.7	0.10	HB	0.80	58.2	0.11
	0.53	57.1	0.10		0.73	60.6	0.10
	0.42	60.0	0.08		0.79	62.5	0.12
	0.50	58.9	0.09		0.78	60.5	0.11
	0.54	58.1	0.09		0.72	57.5	0.10
TP	0.18	67.6	0.05	Х	no sample	no sample	no sample
	0.20	68.4	0.05		no sample	no sample	no sample
	0.22	66.7	0.05		no sample	no sample	no sample
	0.21	69.9	0.05		no sample	no sample	no sample
	0.17	67.4	0.05		no sample	no sample	no sample
MI	0.19	71.0	0.05	WI	0.53	67.7	0.08
	0.22	70.9	0.05		0.47	70.3	0.07
	0.23	70.2	0.05		0.46	68.5	0.07
	0.25	71.4	0.06		1.28	72.2	0.09
	0.28	71.9	0.08		0.48	68.5	0.08
KB	0.43	65.7	0.28	OB	0.68	60.3	0.10
	0.38	65.5	0.07		0.68	60.8	0.09
	0.33	68.8	0.06		0.60	62.5	0.08
	0.38	65.0	0.07		0.63	61.9	0.09
	0.45	64.3	0.08		0.59	61.9	0.08

July 2001

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt		Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
MI	0.46	77.1	0.08	WI	0.44	66.9	0.17
	0.29	68.2	0.09		0.43	67.4	0.08
	0.29	71.6	0.09		0.47	64.5	0.07
	0.30	74.3	0.10		0.52	62.3	0.07
	0.28	75.7	0.14		0.55	60.7	0.07
KB	0.68	66.7	0.05	OB	0.70	55.6	0.10
	0.48	58.8	0.08		0.67	56.6	0.09
	0.33	70.0	0.09		0.66	56.5	0.09
	0.51	65.3	0.09		0.57	60.9	0.12
	0.51	72.4	0.06		0.54	61.6	0.10

October 2001

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
KA	1.43	31.2	0.21
	1.55	29.4	0.21
	1.47	27.5	0.21
	1.29	30.5	0.19
	1.45	26.4	0.23
GC	0.31	65.3	0.07
	0.47	63.9	0.08
	0.51	68.3	0.08
	0.51	62.8	0.11
	0.57	60.1	0.10
TP	0.21	66.1	0.05
	0.33	67.2	0.06
	0.21	62.8	0.06
	0.22	67.9	0.07
	0.21	64.7	0.05
MI	0.25	72.7	0.06
	0.31	70.6	0.07
	0.27	69.5	0.06
	0.27	72.5	0.06
	0.32	73.2	0.06
KB	0.50	60.1	0.14
	0.42	61.3	0.14
	0.42	62.6	0.16
	0.40	66.0	0.17
	0.46	63.9	0.19

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
TU	0.38	71.1	0.07
	0.47	68.2	0.09
	0.43	69.3	0.12
	0.65	65.6	0.11
	0.34	74.4	0.07
HB	0.79	58.1	0.10
	0.82	55.3	0.11
	0.79	57.3	0.11
	0.79	57.3	0.11
	0.77	54.9	0.11
Х	0.42	70.9	0.08
	0.35	73.0	0.08
	0.37	74.9	0.07
	0.38	73.5	0.08
	0.37	74.4	0.07
WI	0.43	67.2	0.11
	0.41	66.7	0.10
	0.45	67.7	0.10
	0.41	68.2	0.09
	0.38	67.3	0.09
OB	0.61	61.9	0.10
	0.60	62.0	0.12
	0.57	59.2	0.06
	0.61	57.8	0.06
	0.61	59.9	0.06

Whaingaroa Harbour

January 2002

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
MI	0.19	69.3	0.05
	0.19	70.2	0.06
	0.28	68.2	0.05
	0.19	73.1	0.05
	0.20	71.7	0.05
KB	0.30	68.6	0.12
	0.28	64.9	0.10
	0.39	63.1	0.12
	0.39	60.9	0.10
	0.42	59.3	0.12

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
WI	0.44	69.3	0.06
	0.33	69.1	0.06
	0.37	70.5	0.05
	0.35	68.4	0.05
	0.36	71.8	0.05
OB	0.66	65.3	0.08
	0.58	62.5	0.07
	0.53	64.0	0.07
	0.59	63.8	0.07
	0.61	64.6	0.08

April 2002

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
KA	0.48	56.7	0.13
	2.73	56.4	0.20
	0.43	62.2	0.13
	0.53	57.6	0.18
	3.27	56.7	0.16
GC	0.58	61.5	0.14
	0.39	63.5	0.09
	0.49	55.1	0.11
	0.45	62.0	0.10
	0.49	61.4	0.10
TP	0.19	64.9	0.06
	0.20	70.6	0.06
	0.18	68.4	0.06
	0.17	66.7	0.06
	0.21	63.6	0.06
MI	0.21	71.6	0.06
	0.17	73.7	0.05
	0.17	72.6	0.06
	0.17	73.7	0.06
	0.20	72.5	0.06
KB	0.33	65.4	0.07
	0.31	64.4	0.07
	0.51	60.2	0.14
	0.36	64.7	0.08
	0.29	66.8	0.07

	Total Organic Carbon g/100g dry wt	Dry Matter g/100g as rcvd	Total Nitrogen g/100g dry wt
TU	0.49	69.8	0.08
	0.47	68.6	0.07
	0.44	72.1	0.07
	0.43	74.4	0.06
	0.43	72.6	0.07
HB	0.73	56.7	0.11
	0.71	58.2	0.10
	0.75	60.6	0.09
	0.67	54.4	0.10
	0.73	56.0	0.10
Х	0.48	70.6	0.06
	0.32	71.0	0.05
	0.28	68.0	0.06
	0.40	69.1	0.07
	0.46	69.0	0.07
WI	0.34	69.4	0.06
	0.41	64.7	0.07
	0.41	65.8	0.07
	0.41	72.9	0.06
	0.44	63.6	0.09
OB	0.51	65.0	0.06
	0.52	64.9	0.07
	0.49	65.7	0.07
	0.54	64.4	0.07
	0.59	63.9	0.08

Appendix 5 - Sediment photosynthetic pigment concentration

Southern Firth of Thames

Whaingaroa Harbour

April 2001

	Chlorophyll-a	Pheophytin
	µg.g⁻¹	µg.g ⁻¹
KA	3.10	3.98
	2.37	2.38
	1.68	2.60
	3.24	3.70
	2.65	2.29
GC	5.65	0.64
	5.15	0.54
	3.87	1.27
	6.02	0.42
	3.44	0.83
TP	1.26	1.44
	0.96	1.34
	1.11	1.60
	1.12	1.87
	1.49	1.88
MI	4.03	1.37
	4.57	0.85
	3.20	0.80
	2.59	1.14
	2.34	2.31
KB	6.10	5.73
	2.82	1.28
	2.01	1.14
	1.87	0.94
	2.69	1.70

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
TU	14.30	2.6
	3.99	2.8
	4.09	2.3
	13.80	4.7
	6.92	2.6
HB	4.90	2.3
	4.28	2.1
	2.70	3.1
	3.95	1.8
	3.80	1.9
Х	no sample	no sample
	no sample	no sample
WI	5.18	3.0
	3.07	2.1
	4.98	3.6
	6.03	3.3
	3.73	3.0
OB	4.51	2.2
	3.72	2.0
	5.13	2.1
	4.02	2.2
	3.78	2.0

July 2001

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
MI	4.48	1.02
	4.22	0.75
	5.27	1.02
	4.11	0.80
	5.08	0.92
KB	2.84	2.85
	2.16	2.74
	1.99	4.71
	3.70	1.67
	2.64	1.16

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
WI	8.26	6.3
	5.61	4.5
	7.48	5.2
	2.97	3.8
	6.01	4.4
OB	4.25	4.3
	5.07	3.0
	5.28	2.9
	5.76	3.9
	4.75	3.8

October 2001

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
KA	3.19	3.60
	2.33	4.30
	1.89	3.89
	3.11	4.71
	no sample	no sample
GC	2.07	1.06
	4.65	0.58
	2.38	1.10
	1.90	1.60
	3.26	1.30
TP	2.19	2.38
	0.45	0.30
	0.60	0.79
	0.68	0.89
	0.86	0.71
MI	5.65	0.10
	2.93	0.61
	4.33	0.75
	4.40	0.87
	4.34	0.76
KB	2.23	2.82
	1.50	4.81
	2.71	1.74
	1.20	0.97
	1.56	1.70

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
TU	5.71	3.2
	5.25	3.5
	6.83	2.4
	3.65	2.8
	5.42	4.4
HB	7.25	3.6
	5.21	2.9
	5.40	3.2
	4.13	2.6
	5.96	2.9
Х	4.77	3.0
	12.40	3.7
	7.28	5.7
	7.45	3.0
	8.36	3.8
WI	5.19	3.1
	3.48	2.5
	2.91	2.6
	3.97	2.3
	2.82	3.3
OB	4.75	2.5
	3.39	2.5
	5.35	4.1
	5.36	3.5
	2.94	2.7

Whaingaroa Harbour

January 2002

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
MI	no sample	no sample
	no sample	no sample
KB	no sample	no sample
	no sample	no sample

-	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
WI	no sample	no sample
	no sample	no sample
OB	no sample	no sample
	no sample	no sample

April 2002

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
KA	no sample	no sample
	no sample	no sample
GC	no sample	no sample
	no sample	no sample
TP	no sample	no sample
	no sample	no sample
MI	no sample	no sample
	no sample	no sample
KB	no sample	no sample
	no sample	no sample

	Chlorophyll-a	Pheophytin
	µg.g ⁻¹	µg.g ⁻¹
TU	no sample	no sample
	no sample	no sample
HB	no sample	no sample
	no sample	no sample
Х	no sample	no sample
	no sample	no sample
WI	no sample	no sample
	no sample	no sample
OB	no sample	no sample
	no sample	no sample

Appendix 6 – QA/QC procedures

Each sample is sieved and preserved in the field, returned to the laboratory, and analysed for indicator species. All non-indicator species are classified into major taxonomic groups (amphipods, bivalves, crabs, cumaceans, gastropods, isopods, ostracods, polychaetes, shrimps and "other") and enumerated. The laboratory analysis of samples for benthic communities involves two processes:

- Sample sorting.
- Species identification and enumeration.

A subsequent step is the input and storage of data into corporate databases. There are also quality control procedures in place for this step.

Quality control of sample sorting¹² is essential to ensure the value of all subsequent steps in the sample analysis process. Re-sorting of samples is employed for quality control of sorting. As a minimum re-sorting effort, a random selection of 10% of the samples from each site is completely re-sorted. Re-sorting is conducted by an experienced sorter other than the original sorter.

Percent sorting efficiency is:

Minimum acceptable sorting efficiency is 95%. If sorting efficiency is greater than 95%, no action is required. Sorting efficiencies below 95% require re-sorting of all samples from the site concerned. Note that samples that are completely re-sorted after falling below 95% are assumed to have achieved 95% efficiency. Any organisms found in the re-sort should be added to the original sorted sample for later identification and enumeration. Once all quality control criteria for sample sorting have been met, the sample debris (shell-hash) can be dried and weighed.

The goal of species identification and enumeration is species or species group level identification and an accurate count of each indicator species, and identification and an accurate count of remaining taxonomic groups. Quality control is provided by complete re-identification and re-enumeration of a random selection of 10% of the samples from each site. This includes examination of any material left-over from each sorted sample. Re-identification and re-enumeration is conducted by an experienced identifier other than the original identifier.

Percent identification and enumeration efficiency is:

Note that the number of errors is based upon the difference between the original count and the re-count.

Minimum acceptable identification and enumeration efficiency is 90%. If identification and enumeration efficiency is greater than 90%, no action is required. Identification and enumeration efficiencies below 90% require that the type of error (see below) is identified and samples re-analysed for this error. Laboratory data sheets should be amended accordingly.

¹² Sorting is the separation of biological material from sediment, shell-hash, and other non-living biological material retained by a 500 µm sieve.

The following are examples of potential errors in species identification and enumeration:

- Counting errors (e.g., counting 11 individuals of a species/species group as 10 or 12; including dead bivalves in a count; including headless polychaete parts in a count).
- Identification errors (e.g., identifying species X as species Y).
- Unrecorded species errors (e.g., not identifying species X when it is present).
- Recording errors (e.g., recording species X as species Y on a data sheet).
- Specimens overlooked in the original analysis (e.g., missed organisms in the leftover sample).

A standard processing form is used for tracking each sample. It includes the details of each sample, the name of the sorter and identifier responsible, time required for sorting and species identification and enumeration, and any additional comments. These need to be completed at each stage of the laboratory analysis of all the samples.