## Hamilton City Long-tailed Bat Survey: Annual monitoring report, 2022



## **ERI Report Number 165**

Report prepared for Project Echo By Laura Caskey and Grant Tempero

Environmental Research Institute – Te Tumu Whakaora Taiao Division of Health, Engineering, Computing and Science University of Waikato, Private Bag 3105 Hamilton 3240, New Zealand





Te Tumu Whakaora Taiao Environmental Research Institute THE UNIVERSITY OF WAIKATO

#### Cite report as:

Caskey L. and Tempero G. 2022. Hamilton City Long-tailed Bat Survey: Annual Monitoring Report, 2022. ERI Report No. 165. Report prepared for Project Echo. Environmental research Institute. Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand. 19 pp.

Cover photo: Long-tailed bats roosting in a Hamilton City bat box. Photo: Aimee O'Sullivan

Disclaimer:

The information and opinions provided in the Report have been prepared for the Client and its specified purposes. Accordingly, any person other than the Client, uses the information and opinions in this report entirely at their own risk. The Report has been provided in good faith and on the basis that reasonable endeavours have been made to be accurate and not misleading and to exercise reasonable care, skill and judgment in providing such information and opinions.

Neither The University of Waikato, nor any of its employees, officers, contractors, agents or other persons acting on its behalf or under its control accepts any responsibility or liability to third parties in respect of any information or opinions provided in this report.

Reviewed by: David Pattemore Senior Lecturer University of Auckland

Approved for release by: Charles Lee Co-Director Environmental Research Institute

## **Executive Summary**

Deforestation, urbanisation and the introduction of mammalian predators has resulted in a significant decline of New Zealand's long-tailed bat (*Chalinolobus tuberculatus* or pekapekatou-roa), which is currently classified as threatened, nationally critical. Hamilton City is one of three urban areas with confirmed long-tailed bat populations. Since 2016, annual city-wide surveys have been conducted by Project Echo, a multi-agency advocacy group for Hamilton City bats. The purpose of the annual surveys is to monitor for changes in bat activity and habitat use throughout Hamilton City, this report presents findings from the 2022 survey.

A total of 72 automatic bat monitors (ABMs) were deployed across 20 historically monitored sites and 52 spatially distributed sites, as specified by a Master Sample design. Acoustic bat monitors (Model AR4) were deployed for approximately 3 weeks, however, only 14 ABMs remained operational for the full 3-weeks, with 30 units failing to operate for more than 4 days. ABM failure was ascribed to the use of older rechargeable batteries. Despite this, a total of 6,734 bat passes were detected from 19 sites, compared to detections at 18 sites from 64 deployments in the 2021 city survey. Similar to previous years, most bat activity was recorded in the south of the city, in close association with the Waikato River and the Mangakotukutuku gully system. There were also six passes recorded in the central city (Site 67, Tristram Street) along with multiple detections in the Hillcrest, Fairfield and Melville residential areas. This data supports the continued use of the Master Sample survey design for the selection of survey sites. While it is advantageous to retain a proportion of previously monitored sites (~25%) for continuity of data, the Master Sample design has improved the proportion of habitats surveyed with greater coverage of residential areas and the inclusion of commercial and industrial areas which have rarely been surveyed.

The reduced number of operational ABM nights is likely to have substantially reduced the sensitivity of the survey to identify locations of low bat activity, as well as the magnitude of detections in high activity areas. Therefore, it is recommended that the data be treated with caution if making comparisons to previous or similar surveys. On-going annual city-wide bat surveys will help identify key habitat areas for conservation and enhancement, in addition to helping understand the effects of urban development and intensification. This is of particular importance given the ongoing and proposed future development in the south of the city, which raises concerns for the preservation of current bat habitats and their connectivity to the city.

## **Table of Contents**

| Executive Summary                | 3  |
|----------------------------------|----|
| Table of Contents                | 4  |
| Introduction                     | 6  |
| Methods                          | 7  |
| Study site                       | 7  |
| Survey design and implementation | 7  |
| Results                          | 8  |
| Discussion                       | 10 |
| Conclusions                      | 11 |
| Acknowledgements                 | 12 |
| References                       | 12 |
| Appendices                       | 14 |

### LIST OF FIGURES

| Figure 1. Comparison of the percentage of surveyed habitat types and percentage of total |    |
|------------------------------------------------------------------------------------------|----|
| bat detections in each habitat type between the 2021 and 2022 surveys                    | .8 |
| Figure 2. Locations of ABM deployments and bat detections from the 2022 Hamilton City b  | at |
| survey. Triangles indicate the ABM failed to operate for a minimum of 5 nights, circles  |    |
| indicate the ABM operated for ≥5 nights                                                  | .9 |

### LIST OF APPENDICES

| Appendix 1. Locations for ABM deployment were drawn from the Master Sample list. Sites<br>I-20 represent previously monitored locations that were included into the Master Sample |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| design for continuity1                                                                                                                                                            | .4       |
| Appendix 2. ABM deployment sites and results of the 2022 survey with comparison to the 2021 survey. N/A indicates ABM was lost, N/D indicates no ABM was deployed at that         |          |
| ocation1                                                                                                                                                                          | 5        |
| Appendix 3. Summary of 24-h weather conditions during the survey period. Data obtained                                                                                            |          |
| rom NIWA Cliflo climate database. Ruakura EWS weather station, network number C75734                                                                                              | ŀ.<br>.7 |
| Appendix 4. 2021 city-wide bat survey results (Aughton, 2021)1                                                                                                                    | .8       |
| Appendix 5. 2020 city-wide bat survey results (Dumbleton and Montemezzani 2020)1                                                                                                  | .9       |

## Introduction

New Zealand has only two extant native species of terrestrial mammal, the long-tailed bat (*Chalinolobus tuberculatus*; pekapeka-tou-roa) and the short-tailed bat (*Mystacina tuberculata*). The long-tailed bat is a small (8–11 g), aerial insectivore that preferentially forages around the edges and gaps between forests (O'Donnell, 2000). Since the arrival of humans, long-tailed bat populations have declined substantially and are now classified as threatened, nationally critical, the highest threat classification given by the Department of Conservation (O'Donnell et al. 2017). Deforestation, the introduction of predatory mammals and increasing urbanisation have been identified as the major threats to long-tailed bat survival (Pryde et al. 2005; O'Donnell et al. 2017).

Hamilton City is one of three urban centres with confirmed populations of long-tailed bats. However, increasing urban expansion and roading development has resulted in the loss of roosting habitat and foraging areas (Dekrout et al. 2014; Le Roux & Le Roux, 2012). Semiannual city-wide surveys have been conducted from 2012-2021 to monitor changes in the Hamilton long-tailed bat population (Le Roux & Le Roux, 2012; Mueller et al., 2017; van der Zwan, 2018; van der Zwan and Mueller, 2019; Dumbleton and Montemezzani, 2020; Aughton, 2021). The first city-wide survey was conducted by Project Echo and Kessels Ecology in 2012, and reported the presence of long-tailed bats in 16 out of 62 urban greenspace sites, sparking interest in the distribution and occupied habitats of the species (Le Roux & Le Roux, 2012). Bat activity was primarily observed in areas with lower density housing, roads and street lights. The three highest activity sites shared a common characteristic of mature exotic and native trees, seen as ideal roosting environments (Le Roux & Le Roux, 2012). Since 2016 Project Echo has conducted annual city-wide surveys with assistance from the Department of Conservation, Waikato Regional Council, Hamilton City Council and community volunteers coordinated by GoEco. These surveys have consistently reported that bat activity was most prevalent in the parks and gully areas in the south of Hamilton City, with some areas recording mean bat pass rates of >100 passes/night (i.e., Dumbleton and Montemezzani, 2020; Aughton 2021). Land to the south of Hamilton City has recently been consented or is pending consent for large scale housing development and associated roading infrastructure. This is expected to affect bat populations as vegetation clearance removes suitable roosts and decreases connectivity between habitats (van der Zwan & Mueller, 2019).

Long-term monitoring of bat activity in the greater Hamilton City area will help identify changes in habitat use by long-tailed bats and potential anthropogenic impacts on the population. This report details the findings of the 2022 annual acoustic monitoring survey, and is the sixth consecutive annual survey since 2016. It details the survey methodology, survey results and provides a short comparison to previous years.

## Methods

#### Study site

Sitting in a largely agricultural catchment, Hamilton City is located in the Waikato region of the North Island of New Zealand, it has an urban area of 11,037 ha and a population of 178,500. The Hamilton Ecological District has undergone significant deforestation and drainage of wetland areas since the arrival of Europeans, with 2.1% of the city remaining in indigenous vegetation (Clarkson et al., 2006). Most of this vegetation is located in the extensive network of branching gullies covering approximately 770 ha (Cornes et al., 2012). The Mangakotukutuku and Mangaonua gullies situated along the southern urban-rural interface of Hamilton City are the largest of the four gullies, and together with the Waikato River, form the single largest and most continuous ecotone in Hamilton. Conversely, the Kirikiriroa and Waitawhiriwhiri gullies are situated within the highly developed areas in the northern part of the city. The Peacocke's suburb is a planned residential area on agricultural land to the south of Hamilton City, and has been identified as containing numerous long-tailed bat roosts (Davidson-Watts, 2019). Urban development and associated infrastructure for this area is planned over the next 30 years, and is expected to contain more than 8000 houses for approximately 20,000 people (HCC, 2019).

#### Survey design and implementation

In order to minimise site selection bias and provide a more even assessment of bat activity across the city landscape, the design of the 2021 city-wide survey was modified to follow a more spatially distributed model (see Aughton, 2021). A total of 113 potential survey locations were generated following the Master Sample Design of van Dam-Bates et al., (2018) (Appendix 1). The Master Sample design does not require that all sites be monitored, and allowed for the integration of 20 historical sites (Sites 1–20) to provide continuity between past surveys and the updated survey design.

For the 2022 survey, a total of 72 automated bat monitors (ABMs) (Model AR4, Department of Conservation Electronics Workshop) were deployed, 52 at the same locations as the 2021 survey, and 20 at new locations from the master sample design. Monitors were deployed from the 28th of February to the 25th of March and were programmed to record bat activity from 1-hour before sunset to 1-hour after sunrise. Recordings from the ABMs were individually analysed using BatSearch software (v3.12, Department of Conservation) following protocols described by Lloyd (2017). The data was then tabulated using Microsoft Excel and mapped as a graphical representation of activity over the city using ArcGIS (v.10.8).

Air temperature (°C), daily total precipitation (mm) and maximum windspeed (m/s) for the monitoring period were sourced from the NIWA Cliflo database, Ruakura EWS weather station, network number C75734.

## Results

A total of 6,734 echolocation passes were recorded from 19 of 72 monitored sites, with a mean of 0.082 passes/night/site. Of the 72 ABMs, one was lost (Site 1), 11 failed to log any data files, and a further 19 failed after less than 5 days of deployment. Only 14 ABMs remained operational for the full 3-week deployment, with the remaining ABMs failing after various time intervals prior to the survey's end. ABM failures were attributed to power loss from the rechargeable batteries. A comparison was made to the 2021 survey to determine if the ABM failures and changes in ABM locations had resulted in differences in the proportion of habitat locations surveyed and the number of sites with bat detections (Figure 1). There were no significant differences in the proportion of habitat types surveyed (Chi-squared; d.f. = 3, p > 0.05) or the proportion of sites with bat detections (Chi-squared; d.f. = 3, p > 0.05) between the 2021 and 2022 surveys.



Figure 1. Comparison of the percentage of surveyed habitat types and percentage of total bat detections in each habitat type between the 2021 and 2022 surveys.

Hammond Park (Site 4) had the highest activity with a mean 258.4 passes/night, followed by Hayes Paddock (Site 2) with 90 passes/night (Figure 2). Hammond Park (Site 16), Lake Rotoroa (Site 37) and Peacocke (Site 39) all averaged above 10.0 passes/night (Figure 2). The northernmost detection was at Site 9 along the Waikato River Trail. Of the 20 sites that were not monitored in 2021, five recorded detections (Sites 37, 53, 67, 68 and 111). Of these, Site 37 located near Lake Rotoroa had the highest mean number of passes (12.3 pass/night). Also of note, Site 67, located at Tristram Street in the central city, recorded 6 passes over 24 nights (0.3 passes/night).



Figure 2. Locations of ABM deployments and bat detections from the 2022 Hamilton City bat survey. Triangles indicate the ABM failed to operate for a minimum of 5 nights, circles indicate the ABM operated for  $\geq$ 5 nights. Seven sites (14, 19, 22, 64, 71, 72 and 95) recorded passes in the 2021 survey (range of means 0.05–4.2 passes/night), but not in the 2022. Four of these sites (14, 19, 22, 64) were located in park or gully habitat, and one each in residential (71), agricultural or lifestyle (72), and industrial/commercial areas (95). Full tabulated results for each site are presented in Appendix 2.

During the 3-week deployment period, air temperature ranged between 9.3°C to 28.2°C with an average maximum temperature of 25.3°C and an average minimum temperature of 13.3°C. Precipitation occurred on 5 days, with one of significant rainfall (56.2 mm) event above 10 mm. Winds were generally low–moderate with gusts averaging 8.8 m/s and one 24-hour period experiencing a maximum gust of 15.4 m/s (Appendix 3).

## Discussion

Since 2016, annual surveys of Hamilton City have been undertaken to monitor for changes in habitat use by long-tailed bats. As a fragmented, nationally critical species, long-tailed bats are vulnerable to habitat loss from urban development. Beginning in late February 2022 and conducted over 3 weeks, 72 automated bat monitors were deployed across a range of habitat areas based on the master sample design of van Dam-Bates et al. (2018). The failure of approximately one-third of the ABMs to operate for more than 5 days likely reduced the sensitivity of the survey, particularly in more industrial and continuously lit habitat areas that previous surveys have shown to have less bat activity. However, the average number of passes per night appears to be broadly similar to previous years, with high activity recorded in the south of the city, in areas such as Hammond Park and Peacocke's. Although the ABM only recorded for 7 days, Hayes Paddock (Site 2) had a large increase in the mean number of bat passes (90 passes/night) compared to the 2020 (mean 0.27 passes/night) and 2021 (0.48 passes/night) surveys. The activity at Hayes Paddock was consistent for each night the ABM was functioning, suggesting that the increase in activity was not an isolated anomaly.

Previous surveys have recorded low activity at Claudelands Bush (< 1 pass/night), with the current survey recording similar activity levels at Claudelands Bush (Site 12), as well as activity in nearby Fairfield residential areas (Sites 68 and 81) for the first time (Dumbleton and Montemezzani, 2020; Aughton 2021). Similar low-level activity was recorded in the Hillcrest and Melville suburbs in 2021 and again in 2022, demonstrating the value of the Master Sample survey design (Dumbleton and Montemezzani, 2020; Aughton, 2021). This is also supported by the fact that previously unsurveyed areas in the central city also recorded low activity (< 1 pass/night) in the Frankton commercial area (Sites 71 and 95) during the 2021 survey, and the central city (Site 67) in 2022. This indicates that bats may occasionally pass over these areas on their way to foraging and roosting habitats in parks, gullies and Lake Rotoroa.

The change in location of 20 survey sites between 2021 and 2022 did not result in a notable difference in the proportion of habitat types surveyed (Figure 1). In addition, the total number of sites with detections was similar between years (i.e., 19 in 2022 c.f. 18 in 2021) despite the wide-spread failure of ABMs. However, seven sites failed to record any passes in the 2022 survey after bats were detected in the 2021 survey. This can be attributed to ABM failure as four failed to record more than one night and the remaining three ABM recorded for no more than 12 nights, likely resulting in lower total site detections. However, the eight additional ABMs deployed in the 2022 survey appears to have partially compensated for the disparities between the 2021 and 2022 surveys. The continuing year-on-year increase in the number of ABMs deployed during the annual survey has provided increasing resolution regarding bat activity across the city, this is helping to identify key habitat areas.

Current research by the University of Waikato and monitoring by other Project Echo members have not directly studied the impacts of urban development on bats, although it is expected that increased development in the south of the city will impact bat populations. Infrastructure and housing development have already commenced in the planned Amberfield suburb of the Peacocke's development area, as well as ongoing housing intensification throughout the rest of the city. Infrastructure and housing developments are expected to affect the resident bat population through vegetation clearance reducing roost availability, loss of connectivity between different habitat areas, and habitat avoidance due to increased light and noise. However, the cumulative effects on bat populations are currently poorly understood. Spatially consistent annual monitoring with the same monitoring devices (i.e. AR4 monitors) will provide more certainty with regards to monitoring changes in habitat use. Continuing surveys will provide valuable information on bat distribution and possible effects associated with ongoing urban development on activity levels and bat distribution.

## Conclusions

Long-tailed bat activity was detected in several suburbs of Hamilton City with calls being also recorded in the north of the city. However, the failure of the majority of ABMs to record over the full 3-week survey period substantially reduced the sensitivity and magnitude of detections, especially in areas with normally low activity. Therefore, caution should be employed when comparing these results to past or future surveys. Ongoing long-tailed bat management should remain a priority as the city continues development to reduce the negative impacts on bat movements, habitats and population numbers, this is particularly important in the Peacocke's area. Monitoring Peacocke's and surrounding sites, as well as the installed bat boxes, will be beneficial to assess how, or if, long-tailed bats will adapt to the new infrastructure.

## Acknowledgements

We would like to thank Harvey Aughton and the Waikato Environment Centre Go Eco community volunteers for their assistance in conducting the survey. Would like to thank Andrew Styche from the Department of Conservation and Kate Richardson Waikato Regional Council for their support and loan of ABMs project. Thank you to Hannah Robinson for extensive assistance with bat monitor deployment and data analysis. We would like to thank all the Project Echo members involved for making the survey possible through their donation of time, advice and equipment.

## References

Aughton H. (2021). Project Echo 2021 Hamilton City wide bat survey. Go Eco. Hamilton.

Clarkson BD, Wehi PM and Brabyn LK. (2006). Bringing back nature into cities: Urban land environments, indigenous cover and urban restoration. CBER Report No. 52. Centre for Biodiversity and Ecology Research, University of Waikato. pp 46.

Cornes TS, Thomson RE and Clarkson BD. (2012). Key ecological sites of Hamilton City: Volumes I & II. CBER Report No. 121. Centre for Biodiversity and Ecology Research, University of Waikato.

Davidson-Watts I. (2019). Long-tailed bat trapping and radio tracking, baseline report 2018 and 2019 Southern Links, Hamilton. Report prepared for AECOM by Davidson-Watts Ecology (Pacific) Ltd.

Dekrout AS, Clarkson BD and Parsons S. (2014). Temporal and spatial distribution and habitat associations of an urban population of New Zealand long-tailed bats (*Chalinolobus tuberculatus*). *New Zealand Journal of Zoology* 41: 285-295.

Dumbleton H and Montemezzani W. (2020). Hamilton City long-tailed bat survey. Annual Monitoring Report 2020 prepared for Project Echo. 4Sight Consulting. Hamilton.

Hamilton City Council. (n.d.) Looking after our environment. Accessed June 2022. <u>https://www.hamilton.govt.nz/ourcity/citydevelopment/peacocke/Pages/Looking-after-our-environment.aspx</u>.

Hamilton City Council. (2019). What's the Plan for Peacocke? Accessed 22 July 2022. <u>https://hamilton.govt.nz/your-council/news/growing-hamilton/whats-the-plan-for-peacocke</u>. Le Roux DS and Le Roux NN. (2012). Hamilton City Bat Survey 2011-2012. Kessels & Associates Limited 2012. Hamilton. pp 24.

Lloyd B. (2017). Bat call identification manual for DOC's spectral bat detectors. (Ed. by The Department of Conservation). Wellington, New Zealand.

Mueller H, Ulrich C, Purcell A. (2017). Hamilton City Long-tailed Bat Survey 2016 – 2017. Client report prepared by for Project Echo. Kessels Ecology Ltd. Hamilton.

O'Donnell CF. (2000). Distribution, status and conservation of long-tailed bat (*Chalinolobus tuberculatus*) communities in Canterbury, New Zealand. Environment Canterbury Report U00/38. Environment Canterbury. Christchurch.

O'Donnell C, Borkin K, Christie J, Lloyd B, Parsons S and Hitchmough R. (2017). Conservation status of New Zealand bats, 2017. Department of Conservation. Wellington.

Pryde MA, O'Donnell CFJ and Barker RJ. (2005). Factors influencing survival and long-term population viability of New Zealand long-tailed bats (*Chalinolobus tuberculatus*): Implications for conservation. *Biological Conservation* 126: 175-185.

van dam-Bates P, Gansell O and Robertson B. (2018). Using balanced acceptance sampling as a master sample for environmental surveys. Methods in Ecology and Evolution, 9(7), 1718-1726.

van der Zwan W. (2018). Hamilton City Long-tailed Bat Survey, 2017 – 2018. Client report prepared for Project Echo by Tonkin & Taylor Ltd. Hamilton.

van der Zwan W and Mueller H. (2019). Hamilton City Long-Tailed Bat Survey. Annual Monitoring Report 2018-2019 to Project Echo. Tonkin & Taylor Ltd. Hamilton.

## Appendices

Appendix 1. Locations for ABM deployment were drawn from the Master Sample list. Sites 1-20 represent previously monitored locations that were included into the Master Sample design for continuity.



# Appendix 2. ABM deployments and results of the 2022 survey with comparison to the 2021 survey. N/A indicates ABM was lost, N/D indicates no ABM was deployed at that location.

|      |                      | NZ       | тм      |                              |           | 2021 Results          |                      |                           |                           |
|------|----------------------|----------|---------|------------------------------|-----------|-----------------------|----------------------|---------------------------|---------------------------|
|      |                      |          |         |                              | Number    | Number                | Total No.            | Mean                      | Mean                      |
| Sito | Location             | Northing | Fasting | Habitat type                 | Of Nights | Of Nights<br>Recorded | JEG TO               | Number of<br>Passes/Night | Number of<br>Passes/Night |
| 1    | Dinsdale             | 5814702  | 1796937 | Park or gully                | N/A       | N/A                   | <u>μα3363</u><br>N/Δ | N/A                       | 0                         |
| -    | Hamilton             | 3014702  | 1750557 | I dik of guily               | N/A       | N/A                   | N/A                  | N/A                       | Ū                         |
| 2    | East                 | 5814165  | 1801611 | Park or gully                | 18        | 7                     | 632                  | 90.3                      | 0.5                       |
| 3    | Pukete               | 5820500  | 1797005 | Park or gully                | 22        | 21                    | 0                    | 0                         | 0                         |
| 4    | Riverlea             | 5812814  | 1804658 | Park or gully                | 22        | 22                    | 5684                 | 258.4                     | 166.3                     |
| 5    | Baverstock           | 5817435  | 1796025 | Park or gully                | 21        | 19                    | 8                    | 0.4                       | 0                         |
| 6    | Rototuna             | 5820703  | 1800537 | Park or gully                | 21        | 15                    | 0                    | 0                         | 0                         |
| '    | Forest Lake          | 5816913  | 1798356 | Park or guily                | 22        | I                     | 0                    | U                         | U                         |
| 8    | East                 | 5815726  | 1801863 | Park or gully                | 21        | 18                    | 0                    | 0                         | 0                         |
| 9    | Horotiu              | 5824681  | 1795332 | Park or gully                | 21        | 19                    | 5                    | 0.3                       | 0                         |
| 10   | Melville             | 5812764  | 1802414 | Park or gully                | 18        | 17                    | 36                   | 2                         | 75.3                      |
| 11   | Fairfield            | 5818403  | 1800272 | Park or gully                | 22        | 12                    | 0                    | 0                         | 0                         |
| 12   | Claudelands          | 5816756  | 1801665 | Park or gully                | 21        | 21                    | 1                    | 0.05                      | 0                         |
| 13   | Grandview<br>Heights | 5816321  | 1795932 | Park or gully                | 22        | 2                     | 0                    | 0                         | 0                         |
| 14   | Hamilton             | 5814296  | 1800476 | Park or gully                | 19        | 12                    | 0                    | 0                         | 4.2                       |
| 15   | Flagstaff            | 5822067  | 1797387 | Park or gully                | 21        | 19                    | 0                    | 0                         | 0                         |
| 16   | Riverlea             | 5813007  | 1804055 | Park or gully                | 22        | 11                    | 179                  | 16.3                      | 11.6                      |
| 17   | St Andrews           | 5819769  | 1799182 | Park or gully                | 22        | 0                     | 0                    | 0                         | 0                         |
| 18   | Rototuna             | 5821083  | 1800890 | Park or gully                | 21        | 3                     | 0                    | 0                         | 0                         |
| 19   | Hamilton             | 5813930  | 1800181 | Park or gully                | 19        | 7                     | 0                    | 0                         | 1.7                       |
| 20   | Hillcrest            | 5813560  | 1805074 | Park or gully                | 21        | 5                     | 32                   | 8                         | 0                         |
| 21   | Pukete               | 5821853  | 1796121 | Park or gully                | 22        | 22                    | 0                    | 0                         | 0                         |
| 22   | Glenview             | 5811539  | 1802111 | Park or gully                | 20        | 0                     | 0                    | 0                         | 1.5                       |
| 23   | St Andrews           | 5818975  | 1799548 | Park or guily                | 24        | 2                     | 0                    | 0                         | 0                         |
| 24   | Dinsdale             | 5815018  | 1/9/62/ | Agricultural or              | 21        | 18                    | U                    | 0                         | U                         |
| 25   | Ruakura              | 5817737  | 1804004 | lifestyle                    | 19        | 0                     | 0                    | 0                         | N/D                       |
| 27   | Rototuna             | 5821304  | 1800058 | Residential                  | 23        | 21                    | 0                    | 0                         | 0                         |
| 28   | Frankton             | 5815415  | 1798790 | Industrial and<br>commercial | 22        | 1                     | 0                    | 0                         | 0                         |
| 29   | Te Rapa              | 5819517  | 1796394 | Industrial and               | 23        | 17                    | 0                    | 0                         | N/D                       |
| 20   | Endorlov             | E 91720E | 1902164 | Desidential                  | 22        | 1                     | 0                    | 0                         | 0                         |
| 30   | Hillcrest            | 581//255 | 180/610 | Park or gully                | 23        | 12                    | 2                    | 0.2                       | 0.1                       |
| 32   | Beerescourt          | 5818033  | 1799088 | Residential                  | 21        | 12                    | 2                    | N/D                       | 0                         |
| 33   | Rototuna             | 5822782  | 1800447 | Residential                  | 22        | 16                    | 0                    | 0                         | 0                         |
| 35   | Nawton               | 5817148  | 1797534 | Industrial and               |           |                       |                      | N/D                       | 0                         |
|      |                      |          |         | Industrial and               |           |                       |                      |                           | _                         |
| 36   | Te Rapa              | 5820686  | 1795731 | commercial                   | 20        | 2                     |                      | N/D                       | 0                         |
| 3/   | Hamilton             | 5814402  | 1/99/35 | Park or gully                | 20        | 3                     | 37                   | 12.3                      | N/D                       |
| 39   | Peacocke             | 5810424  | 1804455 | lifestyle                    | 22        | 3                     | 90                   | 30                        | 10.4                      |
| 40   | Rototuna             | 5822091  | 1798701 | Residential                  | 22        | 5                     | 0                    | 0                         | 0                         |
| 41   | Claudelands          | 5816319  | 1800746 | Park or gully                | 22        | 22                    | 0                    | 0                         | 0                         |
| 42   | Chedworth            | 5819492  | 1801990 | Residential                  | 21        | 20                    | 1                    | 0.1                       | 0.05                      |
| 43   | Dinsdale             | 5813780  | 1797226 | Residential                  | 19        | 3                     | 0                    | 0                         | N/D                       |
| 45   | Rotokauri            | 5817505  | 1794492 | Agricultural or<br>lifestyle | 21        | 0                     | 0                    | 0                         | N/D                       |
| 46   | Hillcrest            | 5815264  | 1803222 | Residential                  | 29        | 7                     | 0                    | 0                         | N/D                       |
| 47   | Te Rapa              | 5818747  | 1798444 | Residential                  |           |                       |                      | N/D                       | 0                         |

| 49  | Melville            | 5812988 | 1800486 | Residential                  | 22 | 12 | 2 | 0.2 | 0.05 |
|-----|---------------------|---------|---------|------------------------------|----|----|---|-----|------|
| 50  | Te Rapa             | 5819289 | 1797755 | Park or gully                | 22 | 3  | 0 | 0   | 0    |
| 51  | Burbush             | 5820666 | 1794206 | lifestyle                    |    |    |   | N/D | 0    |
| 52  | Frankton            | 5815085 | 1798926 | Industrial and commercial    | 20 | 1  | 0 | 0   | 0    |
| 53  | Peacocke            | 5809813 | 1803129 | Agricultural or<br>lifestyle | 23 | 7  | 9 | 1.3 | N/D  |
| 54  | Horotiu             | 5822884 | 1795037 | Agricultural or<br>lifestyle | 23 | 22 | 0 | 0   | N/D  |
| 55  | Rototuna            | 5821846 | 1801041 | Park or gully                | 23 | 17 | 0 | 0   | 0    |
| 57  | Dinsdale            | 5811975 | 1800719 | Residential                  |    |    |   | N/D | 0.3  |
| 58  | Burbush             | 5819711 | 1794618 | lifestyle                    |    |    |   | N/D | 0    |
| 59  | Frankton            | 5813185 | 1799269 | commercial                   | 21 | 0  | 0 | 0   | N/D  |
| 61  | Pukete              | 5820979 | 1797891 | Park or gully                | 24 | 3  | 0 | 0   | N/D  |
| 62  | Huntington          | 5821293 | 1801398 | Industrial and<br>commercial | 23 | 21 | 0 | 0   | 0    |
| 63  | Rototuna<br>North   | 5823190 | 1799703 | Agricultural or<br>lifestyle | 24 | 0  | 0 | 0   | N/D  |
| 64  | Hillcrest           | 5815442 | 1803921 | Park or gully                | 23 | 11 | 0 | 0   | 0.05 |
| 65  | East                | 5814020 | 1802442 | Residential                  |    | 13 | 0 | 0   | 0    |
| 66  | Forest Lake         | 5817602 | 1798443 | Residential                  |    |    |   | N/D | 0    |
| 67  | Hamilton<br>Central | 5814839 | 1800899 | Industrial and<br>commercial | 28 | 24 | 6 | 0.3 | N/D  |
| 68  | Fairfield           | 5818010 | 1801964 | Residential                  | 23 | 22 | 2 | 0.1 | N/D  |
| 69  | Flagstaff           | 5821240 | 1797173 | Park or gully                | 23 | 22 | 0 | 0   | 0    |
| /1  | Frankton            | 5815699 | 1799515 | Residential                  | 24 | 1  | 0 | U   | 0.8  |
| 72  | Chedworth           | 5819881 | 1803046 | lifestyle                    | 22 | 0  | 0 | 0   | 0.1  |
| 73  | Horsham<br>Downs    | 5823470 | 1800487 | Agricultural or<br>lifestyle | 23 | 20 | 0 | 0   | N/D  |
| 74  | Frankton            | 5813997 | 1798208 | Park or gully                | 21 | 0  | 0 | 0   | 0    |
| 76  | Rototuna            | 5823048 | 1/990// | Residential                  | 24 | 2  | 0 | U   | 0    |
| 77  | Te Rapa             | 5821486 | 1795239 | commercial                   |    |    |   | N/D | 0    |
| 78  | Melville            | 5812085 | 1800144 | Residential                  |    |    |   | N/D | 0    |
| 79  | Peacocke            | 5811195 | 1804238 | Agricultural or<br>lifestyle | 21 | 0  | 0 | 0   | N/D  |
| 81  | Fairfield           | 5816990 | 1801172 | Residential                  |    | 17 | 1 | 0.1 | 0    |
| 82  | Baverstock          | 5818214 | 1794990 | lifestyle                    |    |    |   | N/D | 0    |
| 83  | Rototuna            | 5821971 | 1799078 | Residential                  | 20 | 2  | 0 | 0   | 0    |
| 88  | Rototuna            | 5822438 | 1803074 | Residential                  | 21 | 0  | 0 | 0   | 0    |
| 91  | Western<br>Heights  | 5815490 | 1796738 | Residential                  | 19 | 2  | 0 | 0   | 0    |
| 95  | Frankton            | 5815392 | 1799354 | Industrial and commercial    | 22 | 1  | 0 | 0   | 0.1  |
| 96  | Fairview<br>Downs   | 5818222 | 1803195 | Residential                  |    |    |   | N/D | 0    |
| 97  | Peacocke            | 5809997 | 1803911 | Agricultural or<br>lifestyle |    |    |   | N/D | 1    |
| 101 | Hamilton<br>Central | 5815886 | 1800608 | Industrial and commercial    | 21 | 10 | 0 | 0   | N/D  |
| 102 | Chedworth           | 5819075 | 1801861 | Residential                  | 21 | 15 | 0 | 0   | N/D  |
| 105 | Hillcrest           | 5814865 | 1802917 | Residential                  | 21 | 2  | 0 | 0   | N/D  |
| 107 | Rototuna<br>North   | 5823123 | 1797024 | Residential                  | 22 | 0  | 0 | 0   | N/D  |
| 108 | Melville            | 5812619 | 1801092 | Residential                  |    | 5  | 5 | 1   | 0.19 |

16 | Page

# Appendix 3. Summary of 24-h weather conditions during the survey period. Data obtained from NIWA Cliflo climate database. Ruakura EWS weather station, network number C75734.

|          | Maximum Minimum Preci |                  | Precipitation | Maximum windspeed |
|----------|-----------------------|------------------|---------------|-------------------|
| Date     | Temperature (°C)      | Temperature (°C) | (mm)          | gust (m/s)        |
| 28/02/22 | 26.0                  | 13.8             | 0             | 6.7               |
| 01/03/22 | 24.7                  | 14               | 0             | 7.7               |
| 02/03/22 | 26.1                  | 11.6             | 0             | 8.2               |
| 03/03/22 | 25.8                  | 11.1             | 0             | 8.2               |
| 04/03/22 | 23.7                  | 12.5             | 0             | 5.7               |
| 05/03/22 | 24.9                  | 11.8             | 0             | 7.7               |
| 06/03/22 | 25.0                  | 11.9             | 0             | 7.7               |
| 07/03/22 | 25.5                  | 11.7             | 0             | 5.1               |
| 08/03/22 | 27.5                  | 14.5             | 0             | 9.8               |
| 09/03/22 | 26.7                  | 14.3             | 0             | 7.2               |
| 10/03/22 | 26.8                  | 13.9             | 0             | 7.7               |
| 11/03/22 | 26.1                  | 13.2             | 0             | 8.2               |
| 12/03/22 | 23.1                  | 12.5             | 0             | 7.7               |
| 13/03/22 | 25.1                  | 16.2             | 0             | 8.8               |
| 14/03/22 | 25.5                  | 10.3             | 0             | 7.2               |
| 15/03/22 | 27.4                  | 12.2             | 0             | 9.8               |
| 16/03/22 | 28.2                  | 13.2             | 0             | 9.8               |
| 17/03/22 | 25.2                  | 9.6              | 0             | 6.7               |
| 18/03/22 | 25.1                  | 11.6             | 0             | 7.2               |
| 19/03/22 | 23.9                  | 9.3              | 0             | 9.3               |
| 20/03/22 | 24.2                  | 13.0             | 3.2           | 13.4              |
| 21/03/22 | 22.5                  | 16.3             | 8.2           | 12.9              |
| 22/03/22 | 24.0                  | 14.3             | 56.2          | 10.8              |
| 23/03/22 | 27.3                  | 17.1             | 0             | 7.7               |
| 24/03/22 | 24.1                  | 16.6             | 0.4           | 15.4              |
| 25/03/22 | 22.5                  | 18.0             | 2.4           | 12.9              |



Appendix 4. 2021 city-wide bat survey results (Aughton, 2021)

# Appendix 5. 2020 city-wide bat survey results (Dumbleton and Montemezzani 2020)

