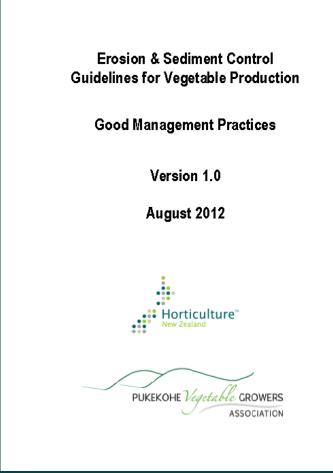

Sustainable practice development, and the Horticulture industry in NZ Horticulture NZ's environmental management processes. CSG presentation – 2 / 12 / 2014

Strategy for horticulture sector

ENVIRONMENTAL MANAGEMENT SYSTEM FRAMEWORK


Aspect	Problem ID	Science / Tools	System	Audit / report
Nitrogen	✓	W	W	W
Phosphorous	\checkmark	\checkmark	\checkmark	W
Soil Cons.	\checkmark	✓	✓	W
Water eff.	\checkmark	✓	W	
Agrichems	\checkmark	✓	\checkmark	√
Biodiversity	W	W		
Agrichems	✓	✓		

Example: Soil Conservation

- Based on Horizons Region Code of Practice - a revision of Ohakune CoP's and FSP
- 15 Years plus of industry led science now.
- <u>New Approach:</u> Risk based assessment, laying out a pathway to achieve maximum protection.
- Methods are inclusive and all encompassing.
- Out for comments with growers, Councils, EDS, Forest and Bird, Iwi before finalising.
- Growers wish to incorporate nutrient management but may publish NM separately.

Risked based assessment:

"Prioritising the methods with the greatest environmental benefit practical for your farm"

Soil risk assessment

THE FOUR KEY STEPS TO MINIMISING SOIL EROSION & SEDIMENT LOSS

1. Paddock assessment

Map and describe the paddock (slope, area, history) Identify where water is coming from klentify where water leaves the paddock

2. Implement control measures for stopping or controlling water entering the paddock

Interception drains

Correctly sized culverts

Benched headlands

Bunds

Grassed swales (controlled overland flow through the paddock)

3. Implement erosion control measures to keep soil on the paddock

Cover crops Wheel track ripping / Wheel track dyking Contour drains Using short row lengths Outtivation practices including minimising passes Harvest management – timing / all-weather facilities Post-harvest field management Wind break crops (wind erosion)

 Implement sediment control measures to manage the water and suspended solids that move off the paddock

> Ensure the accessway is <u>not</u> at the lowest point Raised accessways / Bunds

Vegetated buffers / Riparian margins / Hedges

Silt fences Stabilised discharge points and drains Decanting earth bunds and silt traps

Picture: Field tests of sediment movement on dairy land converted to brassica production in the Horowhenua district

Costs and Benefits

	Range in effectiveness		Tractor	
Mitigation strategy	(%)	Cost per hectare	size	Time
Detailed erosion mgmt plan		\$80 - \$180		
Cover crop	90-99	\$82	120	3.00
Minimum tillage	Ś	Ś	Ś	Ś
Stubble mulching	Ś	\$66	120	1.00
Wheel track ripping	50-80	\$33	120	2.00
Wheel track dyking	50-80	\$33	120	2.00
Contour drains	30-70	\$75		
Contour cultivation	50-80	Not recommended		
Setback strip by drain	50-80	\$105		
Wind break crop				
Benched headlands	50-80	\$64	170	1.25
Bund	80-95	\$130		
Vegetated buffer strip	50-80	\$255		
Silt fence	80-95	\$378		
Silt trap	80-95	\$750 - \$1,300		
Silt trap maintenance		\$75	180	5.55

Produced by Landcare Research 2013

Verified by Agricultural Engineer Horticulture New Zealand

Strategic approach for vegetable sector

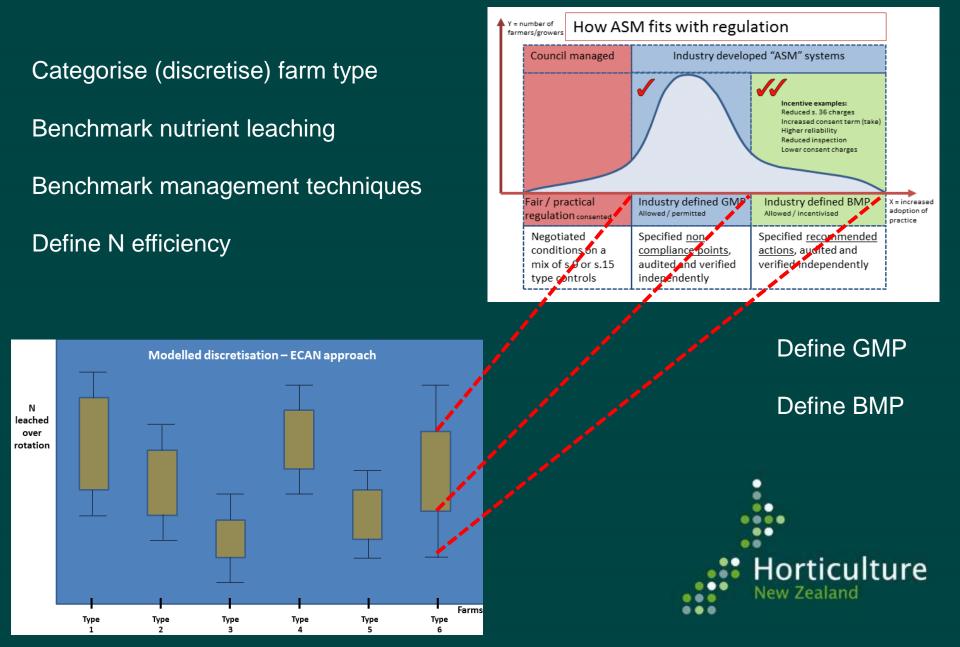
Benchmark nitrogen management performance by region

- Understand grower performance in nitrogen leaching. Demonstrate the range of predicted leaching results.
- Describe the full range of industry accepted good and best management practices.
- Determine the economic efficiency of resource use (\$/kgN applied/ha)
- Publish science describing the nature of the footprint, and activities that influence the size of the footprint.
- Describe the economic impact of reducing fertiliser inputs to address limits that will be set.

Develop codes of practice for soil and phosphorous management by region.

- Work off existing templates developed for Franklin and Horizons regions.
- Develop a design standard for the CoP
- Have the Codes independently peer reviewed

Benchmark irrigation efficiency, water use needs and crop requirements by region.


- Water balance models
- Seasonal irrigation demand
- Daily take amounts (mm)
- Economic efficiency of water use by crop
- ldentified gmp's specific to sectors.

Design the audit that proves compliance with GMP/BMP.

- Develop the right modules
- Obtain endorsement by RC's, env ngo's and iwi
- Develop a robust reporting system that can
 - Demonstrate adherence to agreed actions
 - Monitor environmental performance
 - Be available publicly for scrutiny

Strategy for vegetable sector (Fruit – less of a priority)

Reality of OVERSEER

?????????

OVERSEER DAIRY

OVERSEER

OVERSEER HORT / ARA DI

SAM

NZGAP vegetable cropping programme

	Aspect	Problem	Science / Tools	System	Audit / report
	Nitrogen	x	?	?	
	Phosphorous	x	x	х	
	Soil Cons.	x	x	х	
	Water eff.	x	x		
I	Agrichems	x	x	x	х
	Biodiversity	?			

Aspect	Problem ID	Science and tools	System	Audit / Report	
Nitrogen	Cropping •Vege crops inefficient uptake of N •Share / lease / rotation is for other reasons not N efficiency •Price and quality driving behaviour •No modern yield / quality / nitrogen trials •Models poorly reflect cropping systems – but N loss likely to be high •Driver for system measuring outputs (Overseer accepted)	Overseer •APSIM •FAR Review •Lysimeter network BMP Devpt •Grower / Agronomic Reference Groups •Consent process (Horizons) •MGM Quantification •Benchmarking •Joint Venture Investment in other parts of system •Catchment Modelling	Code of Practice •Risk based assessment •Outline of GMP / BMP •International peer review •Grower and Council Review Certification •1 day Course •Review Massey •Expert verification of adoption Consenting •Conditions •Practice notes	 NZGAP Consultation on module development Data collection / capacity Reporting systems Auditor training and cost 	Related Science Projects •Effectiveness of Soil conservation methods (Phosphorous) •Irrigation efficiency • Yield response

Nitrogen Risk Assessment – in consultation for Waikato

Crop	Crop growth peri	iod	Total area in crop (hectares)	Total paddock area (hectares)	No of plants per unit measure	Typical crop yield	Fertiliser type	When applied	Residual management	Any other source of nutrient	Irrigation Method: E.g. Centre Pivot	
	Planting (Date)	Harvest (Date)	Net production	Ancillary activities		E.g. 60t/ha fresh wt	E.g.: 5kg/ha DAP	Method (eg side dressing)	E.g. incorporated, grazed	Eg effluent, compost	Seasonal Return P (mm) (Maximum (mm)	'eriod

Management practices	Crop	Grower	Rationale/reasons	Consultant comments	Risk based approach to nutrient management
	stage	Adoption Y/N			1. Understand how nutrient loss occurs and potential risk
Plan initiation as a increased	Due				Knowledge of movement of nutrients through soil and water
Plan irrigation requirements	Pre-	Y/N			Factors contributing to nutrient loss
	planting				
Irrigators are calibrated	Planting	Y/N			2. Information to help decision making
Volumes applied informed by	Post-	Y/N			Soil tests
	planting	17.0			Paddock history
relevant factors e.g. Plant	planing				Crop history
growth/ stage/ soil type/ water					Rotation and crop selection
holding capacity and climatic conditions					Rainfall
Water is applied to maintain soil	Post-	Y/N			3. Assessing the risk
moisture between the wilting	planting				Using the risk template identify the risk for each contributing factor
point and field capacity where	planing				Determine the level of risk for the operation
possible.					
	Post-	Y/N			4. Identify and implement GMP's and BMP's to address risks
Irrigation applied allows		T 7 IN			Pre-planting
achievement of the yield target	planting				Planting and Ground Preparation
for fertiliser applied.					Post planting
Irrigation efficiency is	Post-	Y/N			Harvest and post-harvest
measurable at greater than	planting				Other BMP's and GMP's
80%					5. Maintaining records
Water is metered.	Post-	Y/N			Records should be kept to verify actions taken
	planting				
Irrigation scheduling is	Post-	Y/N			
undertaken using a crop model	planting				
or tied into a soil moisture					
monitoring system					
	Post	V/N			
					Horticulture

.....

New Zealand

Waikato JV Report

- Agreed process
- Reference Group
- Agreed service provider
- Agreed timeframe and purpose (how the work would be used)
- Agreed method
 - Overseer
 - Mitigations
 - Rotations
 - Gross margin Analysis
 - Reference check
 - Assumptions

The objective of the study was to collect primary physical, financial and environmental data from growers in Pukekohe to provide representative models of vegetable systems in the Lower Waikato sub-catchment and to analyse the impact of mitigation practices on the environmental and economic performance of the farms

iculture

New Zealand

Table 1: Whole Farm N leaching results (kg N / ha / annum)

	Status Quo	M 1	M2 10%	M2 20%	M2 30%	M2 40%	M 3
Rotation 1	64	66	59	57	53	49	59
Rotation 2	65	61	57	54	51	47	63
Traditional Market Garden	73	69	65	59	51	44	65

Waikato JV Report (Cont'd)

Table 2: gross Margin results of mitigation strategies.

Status	M 1	M2	M2	M2	M2	M 3
Quo		10%	20%	30%	40%	
3,591	3,578	1,870	-787	-2,397	-3,884	611
4,540	4,527	1,348	-921	-3,593	-5,496	1,560
3,274	3,137	1,110	-666	-2,497	-3,940	294

Assumptions

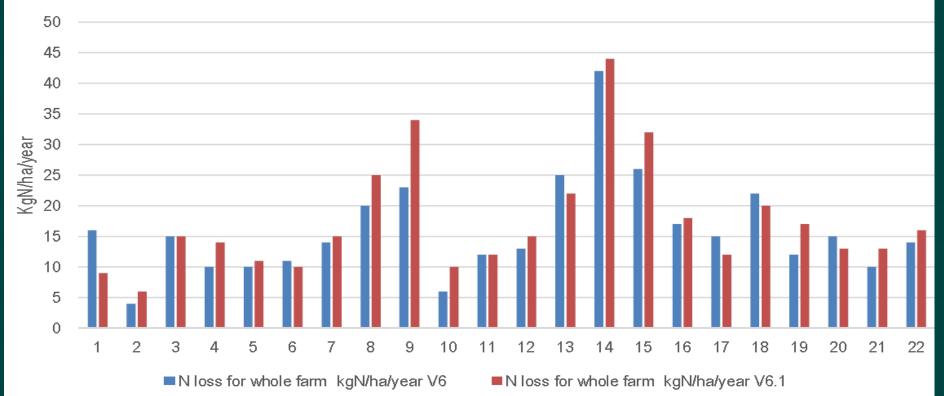
Phosphorous – precursive model only Gross margin – varies annually Overseer – good start of a list of work to be done No macroeconomics (frost free growing region, substitutability etc)

But an excellent start – now duplicated in Horizons, Canterbury, started in Tasman, Gisborne, with Hawkes Bay next.

Further work and key issues

Version control in Overseer

Confirmation of effective mitigation


Accounting frameworks

For example, I carried out my analysis on the Lower Waikato growers in version 6.1.0 in February 2014. When I open up the same files in the latest version 6.1.3 which was released on Friday the 22nd August 2014 the results have almost doubled from those calculated earlier.

Table 1: N leaching results from different versions of OVERSEER

	V 6.1.0 February	V 6.1.3 August
Rotation 1	58	93
Rotation 2	65	105
Traditional market garden	73	123

Overseer version comparison - Arable farms

ENVIRONMENTAL MANAGEMENT SYSTEM FRAMEWORK: Fruit Sector

Holistic solutions harder to come by Less challenging profile equals less effort Some tools have been or are being developed

- Benchmarking / water footprint (kiwifruit sector)
- ARGOS (kiwifruit, Sustainability dashboard)
- GlobalGAP (Fruit sector generally)
- Some irrigation efficiency work (Pipfruit NZ, others)
- Programmes often company led (eg Watties)

Challenges:

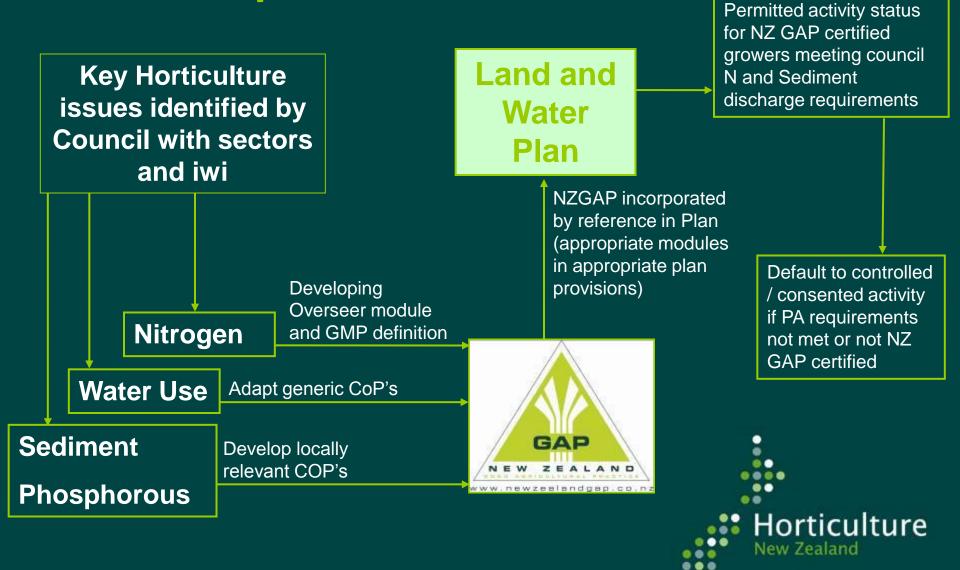
- Lack of cohesion in environmental science planning across the fruit sectors.
- GlobalGAP less responsive to local drivers.
- Has been less of a priority for Horticulture NZ due to significant vegetable industry risks

Gisborne and Tasman Benchmarking

GDC: Grapes, citrus, pipfruit, kiwifruit practices.

Draft (citrus errors likely)

Tasman: Work to benchmark pipfruit, berry crops, grapes


Strawberry sector - started



GAP: A strategic response to strangulation from profligate market access systems

Plan Proposal for Councils

Chris Keenan Horticulture New Zealand | Our Growth Industry ddi 04 470 5669 | ddi 04 471 2861 | mob 027 668 0142

The Rose of Asteel Track Compaction in Remark and Satiment Cesteration United

Acceleble Production at Patectone

L.R. Bester, C.H. Ross, I. Dando I. Hannayate

Erosion at Pukekohe During the Storm of 21 January 1999

L. R. Basher and T. Thompson

Doing it right

Franklin Sustainability Project Guide to Sustainable Land Management

Wheel track diking can be an effective on both flat and sloped paddocks.

