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EXECUTIVE SUMMARY 

This report details statistical analyses investigating the cause-and-effect relationship 
between land cover and associated land-use impacts and the Macroinvertebrate Community 
Index (MCI). The analyses were commissioned by the Ministry for the Environment (MfE) to 
inform discussion on the inclusion of MCI as an attribute in the National Objectives 
Framework. 
 
The MCI measure of invertebrate community quality provides a sensitive indicator of the 
biological health of streams. Based on the sensitivity of macroinvertebrates to organic 
pollution, MCI scores have been widely applied to assess stream health. We analysed a 
national data set of MCI scores collected by regional council and unitary authorities 
predominantly from State of the Environment river monitoring sites during 2007 to 2011. We 
also analysed a regional data set of MCI scores collected in 2012 as part of a project in the 
Management of Cumulative Effects of Stressors on Aquatic Ecosystems research program 
(C01X1005). 
 
Boosted regression trees, structural equation modelling and variance partitioning all identified 
a strong link between the MCI and catchment-scale land cover, and more proximate 
measures of nutrients and habitat. Sediment and nutrients were identified as the probable 
causal pathways for land use to impact MCI. However, results showed that multiple drivers 
were associated with variation in MCI and that the drivers were not independent of each 
other. This intercorrelation between catchment and segment scale, natural and impact 
variables make the relationships between MCI and specific variables hard to quantify. 
 
Overall results suggest that site MCI scores are related to land use through a complex chain 
of causality, which makes isolating the role of specific variables difficult. The impact of limits 
placed on one effect pathway will depend on interactions with other pathways and will also 
be influenced by the local habitat. Catchment scale management may not result in a 
response in MCI scores without equal consideration of segment scale management and vice 
versa. 
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1. INTRODUCTION 

1.1. Background 

A draft report has been produced outlining options for including a Macroinvertebrate 
Community Index (MCI) attribute in the National Objectives Framework (NOF) (Collier 
et al. 2014), but impacts of including the attribute are difficult to ascertain because of 
the complexity of drivers influencing MCI. The Ministry for the Environment (MfE) is 
now seeking advice on the links between drivers and MCI outcomes to inform work on 
identifying and quantifying the impacts of including an MCI attribute in the NOF, in 
particular the impacts of setting a national bottom line. 
 
This report builds on the conceptual model of Collier et al. (2014) and the statistical 
models of Clapcott et al. (2013) to determine what catchment scale and segment 
scale (length of stream between two tributaries) variables are important in determining 
MCI values and what the strength of the relationships are. The aim of the analysis is 
to identify the primary causal variables (potentially available for limit setting) and the 
strength of the relationship with MCI. 
 
 

1.2. Conceptual relationship between Macroinvertebrate Community 
Index and environmental drivers 

The New Zealand Macroinvertebrate Community Index (MCI) uses the presence of 
invertebrate taxa at a site to provide a measure of ecosystem health that has been 
shown to respond to a range of human pressures on wadeable streams. Factors 
affecting MCI are discussed in detail in Collier et al. (2014). The main pressures 
influencing MCI in streams draining agricultural catchments are considered to be 
nutrient inputs, sediment inputs and removal of shade, whereas in urban streams the 
main pressures are stormwater inputs and channel modification (Figure 1). 
 
Recent modelling of MCI using measures of environmental drivers from LCDB3 
(Landcover Database version 3) and FENZ (Freshwater Ecosystems of New 
Zealand ) databases identified a range of potential pathways through which catchment 
scale impacts can affect MCI (Clapcott et al. 2013). Predictor variables with strong 
explanatory power included catchment-scale measures of native vegetation and 
heavy pastoral cover, segment-scale measures of shade, flow, and temperature, and 
in-stream measures of habitat (Table 1). However, the analytical approach used did 
not identify causality or separate the influence of land cover from natural 
environmental variability in determining the values of potential driver variables. 
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Figure 1. Conceptual causal model identifying the expected causal links between human pressures 
and Macroinvertebrate Community Index (MCI) from Collier et al. 2014. 

 
 

Table 1. Predictor variable importance (% deviance explained) in a boosted regression tree (BRT) 
model of Macroinvertebrate Community Index (MCI) from Clapcott et al. (2013). Variables 
are grouped by the scale at which they occur and whether they are measures of human 
impact or natural variability. 

 
Scale-type of variable Predictor Deviance explained (%)

Catchment-impact % Native vegetation 29.52 

 % Pastoral heavy 9.82 

 % Urban 6.12 

 Surface Water Allocation 0.89 

 % Pastoral light 0.41 

 % Bare ground 0.33 

Catchment-natural Catchment rain days > 25mm 5.31 

 Catchment slope 3.8 

 Catchment hardness 2.42 

 Catchment calcium 2.23 

 Catchment average temperature 2.2 
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Scale-type of variable Predictor Deviance explained (%)

 Catchment phosphorus 1.84 

Segment Segment summer temperature 8.68 

 Segment flow stability 7.19 

 Segment habitat 4.78 

 Segment slope 3.37 

 Segment shade 3.12 

 
Segment winter temperature 
normalised 3.08 

 Segment particle size 2.66 

 Segment low flow 2.06 

 
 

1.3. Statistical approaches to exploring relationships between 
Macroinvertebrate Community Index and environmental drivers 

1.3.1. Boosted regression trees 

The BRT method combines additive regression modelling with boosting techniques, 
and provides an estimate of best fit from an ensemble of numerous, often thousands, 
of models. Results include a measure of the comparative strength of association 
between the response variable and predictor variables (percentage of deviance 
explained) and a cross-validation coefficient (CV) indicating the degree to which the 
model fits the holdout data (i.e. potential predictive performance). The model 
development for BRT analysis is discussed in detail in the literature (Friedman 2001; 
Elith et al. 2008; Hastie et al. 2009). The advantages of the BRT method are greater 
power for explaining and predicting ecological patterns as they are not restricted by 
the data assumptions of conventional, parametric approaches; an ability to 
accommodate different types of predictor variables and missing values; immunity to 
the effects of extreme outliers and the inclusion of irrelevant predictors; and automatic 
fitting of interactions between predictors. The BRT method has been used to identify 
the most important variables explaining deviance in observed measures of stream 
health (Clapcott et al. 2012; Waite et al. 2012) and also for predicting the spatial 
distribution of stream biota (Leathwick et al. 2008). The BRT approach does not prove 
causality, but does provide useful output for formulating hypotheses regarding 
causality. 
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1.3.2. Structural equation modelling 

Structural equation modelling is a statistical technique for testing and estimating 
causal relationships. Hypotheses as to the nature of the relationships between 
predictor variables and response variables are specified a priori based on existing 
knowledge of the system. The model is fitted by analysing multiple linear equations to 
find a solution that minimises the difference between the model-implied and observed 
covariance. Results provide estimates of direct, indirect and total effects that causally 
link the variables in the model (Bollen 1989). Structural equation modelling (SEM) has 
been used to identify the pathways through which the biological integrity of streams 
may be impacted by land use (Riseng et al. 2011). 
 
Structural equation modelling development involves three key steps: firstly, the 
development of a conceptual causal model (e.g. Figure 1); secondly, a generalised 
structural model (Figure 2) which identifies the specific causal hypotheses and is 
constrained by parameter/data availability; and thirdly, the fitted structural model or 
output. 
 

1.3.3. Variance partitioning 

Variance partitioning subdivides the variation of a response (MCI scores) with respect 
to two, three, or four explanatory tables that are referred to as factors. Each factor 
comprises a set of predictor variables that are grouped on some basis, such as their 
characteristic scale of variability or whether they represent natural or modified 
conditions. The explained variance of the response is partitioned into components that 
include the individual, shared and unique contributions of each of the factors. The 
individual contribution is the variance explained by a factor on its own, the shared 
contribution is the explained variance that is common to two or more factors and the 
unique contribution is the variance explained by a single factor when the contribution 
of all other factors have been partialled out (i.e. removed; Legendre & Legendre 
1998). The technique examines the relative contribution of different factors in 
explaining variation in a response variable. We used the Bocard (1992) approach that 
uses a sequence of linear regressions to partition variance as described by Booker et 
al. (2014). 
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2. DATA ANALYSIS 

2.1. Source data 

We investigated the relationship between MCI and environmental drivers using two 
data sets:  
 

1. A national data set consisting of MCI values from regional state of the 
environmental networks and modelled predictor variables. 

2. A regional data set consisting of MCI values from the Manawatu region and 
modelled and measured predictor variables1.  

 
 

2.2. Case study 1: national data set 

The national data set was described in Clapcott et al. (2013) and consists of MCI data 
collected by regional council and unitary authorities predominantly from State of the 
Environment river monitoring sites during 2007 to 2011. ‘Site’ was defined by stream 
segment (NZReach), being a section of river between tributary confluences. All data 
for any given site was combined to calculate median values, except when there were 
two obvious upstream and downstream locations in a segment, potentially indicating 
monitoring above and below a point source input, in which case only values from the 
upstream location were used. The working MCI dataset included 1,033 sites from all 
regions. 
 
Environmental drivers included measures of land cover and other environmental 
descriptors. Land cover descriptors from LCDB3 were merged into six predictor 
variables that represented broad land cover categories including native vegetation,  
exotic vegetation, pastoral heavy, pastoral light, urban, bare ground, and wetland. 
Other environmental descriptors accessed from the FENZ database were variables 
with informative relationships with the distribution of freshwater invertebrates 
(Leathwick et al. 2011) and included measures of geography and topography, slope, 
flow and flow influencing factors, and geology. A measure of surface water allocation 
pressure as described by Clapcott and Goodwin (2010) was also included.  
 
Additional environmental descriptors included in our national analyses were predicted 
measures of nitrate-nitrogen (NO3N), dissolved reactive phosphorus (DRP), and 
percent increase in fine sediment as identified in Figure 1 as possible pathway 
variables. These values were predicted for all stream reaches in the country using the 
same spatial data to predict MCI (reported in Clapcott et al. 2013), using comparable 
modelling techniques: random forests for NO3N and DRP (Unwin et al. 2010) and 

                                                 
1 The Manawatu dataset was collected as part of the Management of Cumulative Effects of Stressors on Aquatic 

Ecosystems research program (C01X1005). 
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boosted regression trees for fine sediment (appendices in Clapcott et al. 2011). The 
total predictor data set contained 21 variables (Table 2). 
 
 

Table 2. Description of the national data set including the mean and range of values of land-use 
pressure gradients and environmental variables used in this study. N = 1033. 

 

Variable Description Mean (range) 

% native vegetation Native vegetation cover in the catchment (%) 34.4 (0, 100) 

% pastoral heavy  Pastoral heavy cover in the catchment (%) 42.3 (0, 100) 

% urban  Urban impervious cover in the catchment (%) 3.2 (0, 99) 

Surface Water Allocation 
Mean annual low flow remaining after the 
upstream daily surface water allocation is 
deducted (proportion) 

0.9 (0, 1) 

Catchment rain days  
Days/year with rainfall in the catchment greater 
than 25 mm 

14.2 (1.9, 71.4) 

Catchment temperature  
Average air temperature (°C) in the catchment, 
normalised with respect to SEGJANAIRT 

-0.5 (-6.0, 1.6) 

Catchment slope  Average slope in the catchment (°) 12.9 (0.0, 32.0) 

Catchment hardness  
Average hardness of rocks in the catchment, 1 = 
very low to 5 = very high 

2.9 (1, 5.0) 

Catchment calcium 
Average calcium concentration of rocks in the 
catchment, 1 = very low to 4 = very high 

1.6 (1.0, 4.0) 

Catchment phosphorus  
Average phosphorus concentration of rocks in the 
catchment, 1 = very low to 5 = very high 

2.4 (1.0, 5) 

Segment flow stability  Annual low flow/annual mean flow (ratio) 0.2 (0, 0.5) 

Segment low flow  
Mean annual 7-day low flow (m3/s), fourth-root 
transformed 

1.1 (1, 4.1) 

Segment summer 
temperature  

Segment summer air temperature (°C) 17 (12.6, 19.6) 

Segment winter 
temperature normalised  

Segment winter air temperature (°C), normalised 
with respect to SEGJANAIRT 

0.5 (-4.2, 3.5) 

Segment shade  Segment riparian shade (proportional) 0.3 (0, 0.8) 

Segment slope  Segment slope (°), square-root transformed 1.3 (1, 3.9) 

Segment habitat  
Weighted average of proportional cover of local 
habitat using categories of: 1 = still; 2 = backwater; 
3 = pool; 4 = run; 5 = riffle; 6 = rapid; 7 = cascade 

4.0 (2.3, 4.8) 

Segment substrate  

Weighted average of proportional cover of bed 
sediment using categories of: 1 = mud; 2 = sand; 3 
= fine gravel; 4 = coarse gravel; 5 = cobble; 6 = 
boulder; 7 = bedrock 

3.6 (1, 5.9) 

Fines 
Increase in fine sediment cover: contemporary 
cover minus reference cover, logit transformed (%) 

-0.2 (-3.7, 3.4) 
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Variable Description Mean (range) 

DRP Dissolved reactive phosphorus (mg/L)  0.013 (0.01, 0.15) 

NO3N Nitrate-nitrogen (mg/L) 0.396 (0.01, 5.61) 

 
 

2.2.1. Boosted regression trees 

Method 

In previous modelling we used both catchment and segment scale predictors to 
explain the deviance in MCI data (Clapcott et al. 2013). This time, we used a selection 
of variables based on their identified relative importance in previous modelling and 
their suitability as proximate measures of the causal links identified in Figure 1. We 
fitted a model including catchment-scale land cover and surface water allocation 
variables and then repeated the model fitting procedure excluding catchment-scale 
variables. Model output was compared and the relative change in variable importance 
examined, to determine whether proximate variables are appropriate predictors of 
MCI when catchment-scale land cover variables are excluded. We also fitted a two-
step model to investigate deviance partitioning between land cover and other 
variables. Output from Step A (a model fitted using land cover variables only) was 
used as a fixed offset in Step B (a model fitted using all other variables) and the 
increase in deviance explained was examined. 
 
Results 

The all-inclusive BRT model explained 63.7% of the deviance in the MCI data and had 
an internal cross validation of 0.80 which indicates excellent potential predictive 
performance. Similarly, the no land cover BRT model explained 61.5% of the 
deviance in the MCI data and had an internal cross validation of 0.79. The most 
important predictors in the all-in model included native vegetation, heavy pasture, and 
predicted fine sediment and nitrate. The latter were the top two predictors in the no 
land cover model suggesting they provide proximate measures of the effects of land 
cover. Segment scale descriptors of temperature and flow were also important 
predictors in both models. 
 
For the two-step model, land cover variables alone (Step A) explained 50.5% of the 
deviance in the MCI data and the inclusion of additional variables (Step B) increased 
the percentage deviance explained to 66.7%. Most of the additional deviance 
explained was attributable to descriptors of natural environmental variability at 
catchment and segment scales (Table 3). 
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Table 3. Predictor variable importance (percent deviance explained) in predictive models of 
Macroinvertebrate Community Index (MCI) using boosted regression tree (BRT) model 
approaches. 

 
Scale-type of 
variable 

Predictor All-in 
No land 
cover 

Two-step 
A 

Two-step 
B 

Catchment-impact % native vegetation 20.19 - 48.6  

 % pastoral heavy 7.43 - 30.6  

 % urban   3.96 - 19.9  

 Surface water allocation 0.54 - 0.9  

Catchment-natural Catchment rain days 5.11 9.78  9.9 

 Catchment slope 3.03 4.40  3.1 

 Catchment calcium 2.34 3.31  3.8 

 Catchment hardness 1.48 2.28  2.4 

 Catchment phosphorus 1.34 1.92  4.1 

 Catchment temperature 1.19 1.22  3.6 

Segment-impact FinesOE 15.76 25.26   2.9 

 NO3N  7.07 17.27  6.9 

 DRP 1.91 2.06  6.7 

Segment-natural Segment summer 
temperature 

7.02 5.53  18.8 

 Segment flow stability 6.28 6.29  10.7 

 Segment slope 3.91 5.11  7.9 

 Segment habitat 3.54 4.79  3.3 

 Segment shade 2.68 5.00  4.5 

 Segment winter 
temperature 

2.31 2.40  6.6 

 Segment low flow 1.73 1.69  3.3 

 Segment substrate 1.15 1.66  1.2 
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2.2.2. Structural equation modelling 

Method 

We developed a general structural model based on available data (Table 2). The 
general structural model included three exogenous driving variables (percentage land 
cover), four unmeasured concept (latent) variables and their associated measurement 
models, and nine endogenous variables (measured variables that are influenced by 
the exogenous variables) (Figure 2). The measurement models provide an estimate of 
each latent variable. Some variables were transformed to meet the assumptions of 
normality for this linear methodology, including NO3N and DRP (log N+1), FineOE 
(logit), Segment shade (logit), and Segment low flow (log N+1). 
 
 

 
 

Figure 2. Generalised structural model identifying the expected causal links between human 
pressures and Macroinvertebrate Community Index (MCI). Exogenous or external 
drivers are in grey boxes and endogenous or proximate variables are in white boxes. 

 
 
We fitted the general model to the national data set by iteratively refining the base 
model linkages to identify the best fitting causal structure consistent with known 
physical and biological relationships, i.e. only fitting sensible relationships. We also 
developed a simplified model to illustrate direct comparisons between pathways 
suitable for management interventions, whereby variables indicative of natural 
environmental variation were excluded. Model fit was evaluated using the following 
descriptive statistics: 

 Chi-square (χ2) statistic — a test of the null hypothesis that the model fits the data. 
Low χ2 values indicate best model fit with p > 0.05 and ideally close to 1, i.e. p < 
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0.05 would indicate that the null hypothesis (that the model fits the data) should be 
rejected. However with large sample sizes, the Chi-square test may have large χ2 
values and p < 0.05 even when the fit is good. 

 Root mean square error (RMSE) approximation — another test of how well the 
data fit to the causal hypothesis, where RMSE close to zero and p < 0.05 are 
considered to indicate good fit. 

 Comparative Fit Index (CFI) — provides an assessment of model fit insensitive to 
sample size. A CFI value of 0.90 or higher is desirable. 

 
Results 

The fitted structural model illustrated the pathways between catchment-scale land 
cover, proximate segment-scale descriptor variables and MCI. There was a strong link 
between heavy pastoral cover and nutrients (predicted concentrations of DRP and 
NO3N). However, the link between nutrients and MCI was not as strong as that 
observed for habitat and MCI and predicted increase in fine sediment and MCI. The 
SEM suggests that an increase in pastoral cover is likely to result in an increase in 
nutrient values but this may not result in a significant decrease in MCI. However, a 
change in stream habitat reflected by substrate composition, hydraulic diversity and 
fine sediment is likely to result in a direct change in observed MCI. The SEM 
illustrates the complexity of impact and potential recovery pathways for MCI as has 
been shown in previous survey studies (for review see Collier et al. 2014). 
 
The inferences from this SEM are limited by the fact that descriptive statistics suggest 
poor model fit: CFI = 0.756; χ2 = 1861.81, degrees of freedom = 36, p < 0.001; RMSE 
= 0.222 (95th CI 0.213, 0.230), p < 0.05. Non-independent endogenous variables can 
contribute to poor model fit. 
 
We fitted a second simplified SEM excluding variables likely to be driven by natural 
variability rather than catchment-scale land cover (e.g. habitat descriptors of hydraulic 
diversity and substrate size) and focussing on the impact pathways of nutrients and 
sediment (Figure 4). The model descriptive statistics were much improved but still 
suggested a poor model fit: CFI = 0.939; χ2 =213.63, degrees of freedom = 7, p < 
0.001; RMSE = 0.169 (95th CI 0.150, 0.189), P < 0.05. The pathways in the model 
illustrate an almost equal contribution of sediment and nutrients influencing MCI, and 
again a dominant relationship between heavy pasture and nutrients (Figure 4). 
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Figure 3. Parameterised structural equation model showing the relative importance (standardized 
path coefficients) of direct pathways between human pressures and Macroinvertebrate 
Community Index (MCI). Standardised effect sizes for non-significant effects and 
correlations were removed for clarity. The strongest effect paths are indicated by thick 
lines. 

 
 

 
 

Figure 4. Simplified fitted structural equation model showing relative importance (standardized path 
coefficients) of direct paths between human pressures and Macroinvertebrate Community 
Index (MCI). 
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2.2.3. Variance partitioning 

Method 

We used variance partitioning to examine how much of the total explained variation of 
MCI could be attributed to explanatory variables grouped into four factors: catchment-
impact, segment-impact, catchment-natural and segment natural. Explanatory 
variables were grouped into these factors as shown in Table 3. The output provides a 
measure of how much variation is attributable to individual factors, and how much is 
uniquely attributable to each factor. 
 
Results 

When used in combination, all four factors explained 61% of the variance in MCI. 
Individually, factors explained similar amounts of variation (40-50%) with ‘catchment-
impact’ factor explaining the largest amount (Table 4). However, the unique variation 
explained by all four factors was very low (1-5%) and indicated that no individual 
factor is likely to explain variation in MCI not accounted for by other factors. All model 
components were highly significant (p < 0.001). 
 
 

Table 4. Examination of the total variance explained in a national model of Macroinvertebrate 
Community Index (MCI) using linear variance partitioning. N = 1033. 

 
Factor Individual Unique 

Catchment-impact 49.8  3.5 

Catchment-natural 40.1  2.2 

Segment-impact 39.7  1.1 

Segment-natural 39.5  5.1 

 
 

2.3. Case study 2: regional data set 

The regional data set consists of pressure and response variables measured at 58 
sites in the Manawatu and Rangitikei catchments (Table 5). Land cover, flow and 
slope variables were spatial measures as described in Table 2. Water chemistry 
variables (total nitrogen [TN] and total phosphorus [TP]) were measured monthly by 
Horizons Regional Council. Remaining data was collected during field sampling in 
February to April 2012 where fine sediment cover (Fines) was measured using an in-
stream visual protocol (Clapcott et al. 2011), periphyton cover was measured using a 
visual assessment method (Biggs & Kilroy 2000), riparian shade was estimated for the 
study reach, and average daily temperature was measured using a Hobo© 
temperature logger. 
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Table 5. Description of the regional data set including the mean and range of values of land-use 
pressure gradients and measured environmental variables. N = 58. 

Variable Description Mean (range) 

% native vegetation Native vegetation cover in the catchment (%) 0.329 (0.02, 0.98) 

% pastoral heavy  Pastoral heavy cover in the catchment (%) 0.569 (0.0, 0.92) 

Segment low flow 
Mean annual 7-day low flow (m3/s), fourth-root 
transformed 

1.30 (1.01, 2.03) 

Segment slope  Segment slope (°), square-root transformed 1.15 (1.0, 1.62) 

Fines Site fine sediment cover (%) 27.6 (0.25, 79.9) 

TN Total phosphorus 3-yr median (mg/L)  0.69 (0.07, 1.8) 

TP Total nitrogen 3-yr median (mg/L) 0.037 (0.01, 0.19) 

Shade  Site riparian shade (%) 33.98 (3.0, 94.0) 

Periphyton Site total filamentous periphyton cover (%) 10.3 (0, 65.9) 

Temperature Water temperature 7-day average (°C) 16.9 (8.0, 21.9) 

 
 

2.3.1. Boosted regression trees 

Method 

Firstly, a BRT model including 10 predictors was developed. The number of predictors 
was restricted to 10 to minimise over-fitting based on a sample size of 58.Then we 
refitted the model excluding catchment-scale land cover variables and compared the 
relative importance of predictors from the two models. As in the national analysis, a 
two-step model was used to examine the partitioning of deviance in MCI between land 
cover and other explanatory variables. 
 
Results 

The ‘all-in’ and ‘no land cover’ models had similar descriptive statistics suggesting fair 
model performance: the all-in model explained 37.1% of the deviance in the MCI data 
and had a cross validation correlation of 0.39; the no land cover model explained 
38.2% of the deviance in the MCI data and had a cross-validation correlation of 0.56. 
The all-in model identified native vegetation and heavy pasture as two of the top four 
predictors along with segment low flow and TN. The latter were retained as top 
predictors along with temperature and TP in the no land cover model (Table 6).  
 
For the two-step model, the heavy pasture and native vegetation response was 
directionally constrained and explained 31.8% of the deviance in the MCI data (Step 
A). The inclusion of additional variables (Step B) increased the percentage deviance 
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explained to 52.9%. The majority of the additional deviance explained was attributable 
to segment low flow. 
 
 

Table 6. Predictor variable importance (percent deviance explained) in predictive models of 
Macroinvertebrate Community Index (MCI) in the regional data set using boosted 
regression tree (BRT) model approaches. 

 
Scale – type of 
variable 

Predictor All-in No land cover 
Two-step 

A 
Two-step 

B 

Catchment – impact  % pastoral heavy 26.47 - 62.2 - 

 % native vegetation 16.99 - 37.8 - 

Segment – impact TN                            16.69 32.13 - 12.9 

 TP                            5.24 10.25 - 6.5 

 Temperature          4.77 22.09 - 4.7 

 Periphyton            4.59 6.89 - 4.1 

 Shade                      4.00 4.46 - 11.3 

 Fines                      1.5 1.40 - 5.0 

Segment – natural Segment low flow        18.71 20.45 - 53.9 

 Segment slope          1.03 2.31 - 1.6 

 
 

2.3.2. Structural equation modelling 

We developed a general structural model for the regional data (Table 5). The general 
structural model included two exogenous driving variables (percentage land use 
cover), three unmeasured concept (latent) variables and their associated 
measurement models, including four endogenous variables (Figure 5). The 
measurement models provide an estimate of each latent variable. Some variables 
were transformed to meet the assumptions of normality for this linear methodology, 
including TN and TP (log), and Fines (logit). 
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Figure 5. Generalised structural model identifying the expected causal links between human 
pressures and MCI in the regional data. Exogenous or external drivers are in grey boxes 
and endogenous or proximate variables are in white boxes. 

 
Results 

The fitted structural model illustrated the pathways between catchment-scale land 
cover and MCI (Figure 6). There were significant negative effects between native 
vegetation cover and sediment and nutrient descriptors, and a significant positive 
effect between heavy pasture cover and nutrients. The link from nutrients to MCI 
indicated a significant dominance of this pathway in driving MCI. Descriptive statistics 
indicated good model fit: CFI = 0.975; χ2 = 9.01, degrees of freedom = 9, p = 0.11; 
RMSE = 0.120 (95th CI 0.01, 0.243), p = 0.16. 
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Figure 6. Fitted structural equation model showing the relative importance (standardized path 
coefficients) of direct paths between human pressures and Macroinvertebrate Community 
Index (MCI) in the regional data set. 

 
 

2.3.3. Variance partitioning 

Method 

We used variance partitioning to examine how much of the total explained variation of 
MCI could be attributed to variables grouped into three factors: catchment-impact, 
segment-impact and segment natural. Explanatory variables were grouped into these 
factors as shown in Table 6. 
 
Results 

When combined, all three factors explained 43% of the variance in MCI. Individually, 
factors explained between 14% and 42% of variance with ‘catchment-impact’ factor 
explaining nearly twice as much variance in MCI than any other factor (Table 7). The 
catchment-impact factor also explained almost 10% unique variation in MCI, but 
unlike the individual variance components, the unique variations explained by all three 
factors were not statistically significant (p > 0.1) 
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Table 7. Examination of the variance explained in a regional model of Macroinvertebrate 
Community Index (MCI) using linear variance partitioning. N = 58. 

 
Factor Individual Unique 

Catchment-impact 41.9  9.4 

Catchment-natural 22.8  0.2 

Segment-impact 13.9  0.9 
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3. RELEVANCE FOR MACROINVERTEBRATE COMMUNITY 
INDEX AS A NATIONAL OBJECTIVES FRAMEWORK 
ATTRIBUTE 

Both the national analyses and the regional case study identified the strong link 
between the MCI measure of invertebrate community quality and catchment-scale 
land cover, and proximate measures of nutrients and habitat. The results suggest that 
site MCI scores are related to land use through a complex chain of causality, which 
makes isolating the role of specific variables difficult. 
 
Boosted regression tree modelling that excluded land cover variables did not 
significantly reduce model performance. In the national data set this may be due to 
the fact that habitat (FinesOE) and nutrient variables (DRP and NO3N) are predicted 
in part by land cover and so these variables reflect measures of catchment land cover. 
However, in the regional data set, habitat (Fines) and nutrient variables (TN and TP) 
were measured and showed independent correlative relationships with land cover and 
MCI. Both national and regional BRT models illustrate that approximately two thirds of 
total deviance in MCI can be explained by catchment scale or segment scale 
measures of human impacts. Both analyses also explained approximately one third of 
total deviance in MCI data using additional variables that described natural 
environmental variation (e.g. segment slope, temperature and flow). 
 
Structural equation models supported the theoretical model (Figure 1) that postulated 
that the causal pathways through which land use affects MCI are complex. While the 
national models were not robust in terms of model statistics they did highlight the 
relative importance of impact pathways. Results indicate that an increase in heavy 
pastoral cover is associated with increased nutrients and decreased MCI. Equally, 
high levels of fine sediment deposition (as a result of combined land cover effects) are 
associated with decreased MCI. Both of these impact pathways are relatively less 
influential than segment scale variables describing habitat, which may reflect an 
additional impact pathway or the influence of natural environmental variation (Figure 
1). These results suggest that segment scale processes may be as important as 
catchment scale processes in determining MCI values. This finding is consistent with 
previous studies that have demonstrated a land-cover cascade (Burcher et al. 2007) 
linking catchment scale land cover to in-stream biotic response variables through 
proximate or reach-scale intermediate variables (e.g. Weigel et al. 2003; Cover et al. 
2008). Such hierarchical models can be used to identify the most appropriate scales 
to manage stream health (e.g. Sheldon et al. 2012). 
 
The regional structural equation model demonstrated robust correlative relationships 
between land cover and nutrients and sediment, and a dominant impact pathway 
between nutrients and MCI. Habitat descriptors were not included in this model and so 
the relative importance of environmental setting in influencing MCI cannot be 
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ascertained. This model does show that nutrients (3-yr median) were a stronger driver 
of MCI than sediment (single measure in 2012) at the 58 sample sites.  
 
The variance partitioning analyses demonstrated that MCI could be reasonably 
predicted by any given combination of catchment or segment, impact or 
environmental descriptor variables. This is likely to illustrate the correlation between 
predictor variables in the national data set, i.e. higher values of land use impact are 
associated with lower slopes and warmer temperatures. In the regional case study, 
the unique variance component had lower statistical certainty (possibly due to sample 
size), but results did illustrate that catchment scale measures of land use best 
informed the explanatory model of MCI. These results reiterate the observations from 
both SEM and BRT models that MCI values are related to land use through a complex 
chain of causality making it difficult to isolate specific factors. 
 
Our results are indicative of causal pathways, but true causality can only be tested 
using manipulative experimentation. The results of all analyses in this study indicate 
that multiple drivers are associated with variation in MCI and that the drivers are not 
independent of each another. The impact of limits placed on one effect pathway will 
depend on interactions with other pathways and will also be influenced by the local 
habitat. Catchment scale management may not result in a response in MCI without 
equal consideration of segment scale management and vice versa.  
 
Finally, as a community index the MCI integrates multiple effects and this may add to 
the difficulty in quantifying specific effect pathways. The strengths and weaknesses of 
community indices are well documented. They provide good indicators of overall 
ecosystem health and are not only useful indicators of current conditions, but also of 
cumulative effects and changes over time (Barbour et al. 2000). However, community 
indices can be insensitive to certain impacts and it has been argued that specific 
species responses provide a much more sensitive measure of impact and greater 
evidence of causality (Baker & King 2010). Our analyses suggest that the MCI 
provides a sensitive indicator of the level of human impact on stream health but the 
relationships between MCI and drivers are not independent and hence hard to 
quantify. 
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