# Joint Witness Statement (JWS) Expert Conferencing Table 3.11-1

#### Nutrient Attribute: Attachment 2

Olivier Ausseil, Adam Canning, Nicholas Conland, Tim Cox, <u>Craig Depree</u>, Garret Hall, Kathryn McArthur\*, Mike Scarsbrook & Bill Vant

# Issues considered in JWS nutrient attribute

#### Waikato mainstem nutrients

- Revision of existing 'trophic-state' TN & TP targets
- two approaches:
  - NPS-FM-based (Approach 1c);
  - phytoplankton-nutrient relations (Approaches 2a and 2c)

#### 2. Tributaries and subcatchments

- New nutrient thresholds to address concerns that PC1 only considers nitrogen toxicity
- three approaches:
  - PC1 mitigations as short-term targets (Approach 3);
  - ecosystem health (Approach 4);
  - Periphyton (slime) (Approach 5)

#### 3. Nitrate and ammonia toxicity - (Waikato mainstem and tributaries)

• <u>new</u> classification proposed to address inconsistent outcomes of current PC1 targets

# Quick note: 'sub-toxic' effects of nutrients

 lake 'trophic state' → growth of phytoplankton (Waikato mainstem)

 river 'trophic state' → growth of periphyton (hard-bottom tributaries)

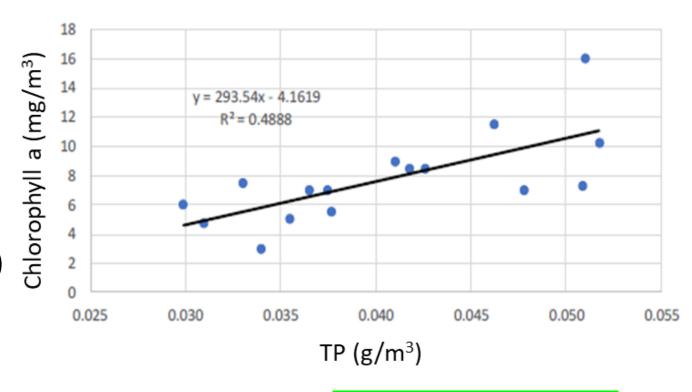
River 'ecosystem health ' → macroinvertebrate community

(all – measured in wadeable tributaries)



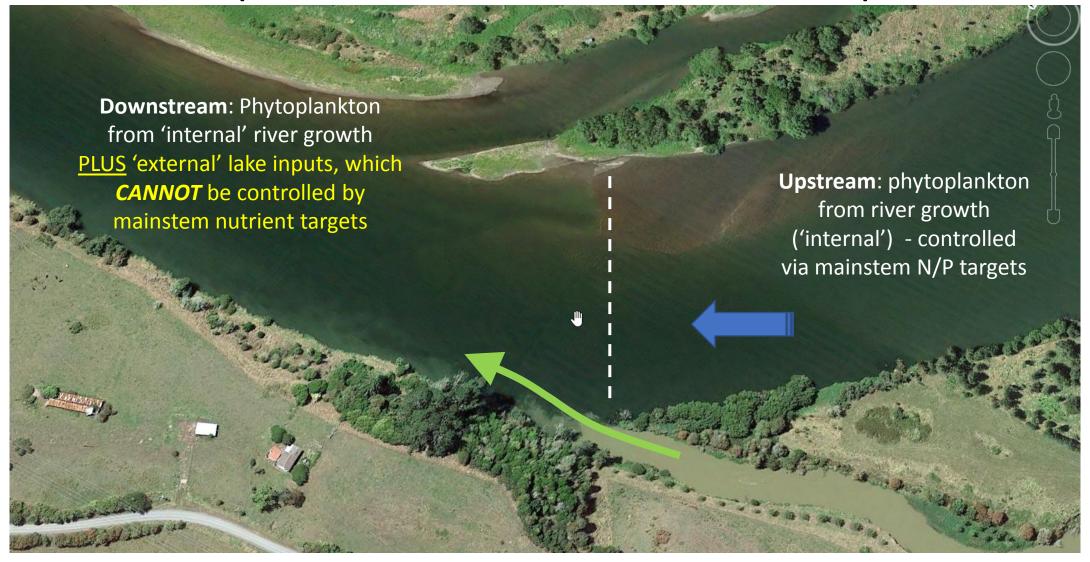
## 1. Waikato mainstem nutrients

- IMPORTANT: Revised nutrient targets based on the <u>same bands/outcomes as PC1</u>
- Approach 1 'tidy up' of how NPS-FM lake attribute was applied in PC1
  - Relationship between TN and lake trophic state depends on stratification regime
  - 1c = all Waikato mainstem sites corrected from 'seasonally stratified' to 'polymictic'


|      | NPS-FM Total Nitrogen (TN) mg/m³ |             |            |  |  |  |  |
|------|----------------------------------|-------------|------------|--|--|--|--|
| Band | Seasonally stratified            |             | Polymictic |  |  |  |  |
|      | PC1                              | Approach 1c |            |  |  |  |  |
| Α    | <160                             | <del></del> | <300       |  |  |  |  |
| В    | <350                             | <del></del> | <500       |  |  |  |  |

- '1c' recommended (12 of 16 experts) for revised mainstem TN targets in Table 3.11-1
- NPS-FM lake TP thresholds considered problematic for managing phytoplankton in river
- 13 of 16 experts did not select Approach 1 to define TP targets in Table 3.11-1
  - disagree: Dr. Cooper; Dr. Canning; Ms. McArthur

#### 1. Waikato mainstem nutrients


- Approach 2 regression models
- TN/TP thresholds derived via relations between nutrients & phytoplankton
  - NOTE uses the same phytoplankton target ('chlorophyll a' ≤5 mg/m³) as PC1

- two models used:
  - NIWA 'model' TN and TP (2a)
  - new 'models' (Dr. Cox) TP only (2c)



2a and 2c accounted for external inputs from lowland lakes (Mr. Vant; Dr. Depree)

# External inputs from lowland eutrophic lakes



• 13 of 16 experts agreed that nutrient thresholds for Waikato River at Mercer & Tuakau should account for external lake inputs. disagree: Dr. Cooper; Dr. Canning; Ms. McArthur

# 1. Waikato mainstem nutrients (Approach 2)

• 2a vs 2c: different equations — but comparable threshold concentrations ✓

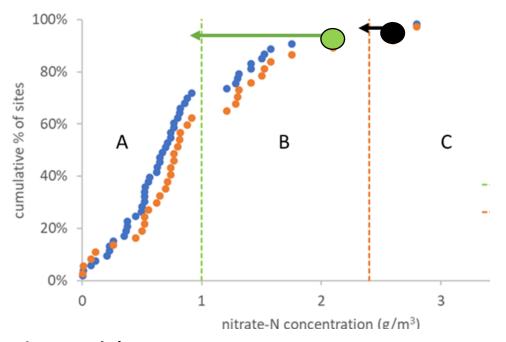
|       | 2a (N                   | 2c (Dr. Cox)            |                         |  |
|-------|-------------------------|-------------------------|-------------------------|--|
| FMU   | TN (mg/m <sup>3</sup> ) | TP (mg/m <sup>3</sup> ) | TP (mg/m <sup>3</sup> ) |  |
| Upper | 360                     | 25                      | <b>25</b>               |  |
| Mid   | 360                     | 29                      | 31                      |  |
| Lower | 470                     | 35                      | 38                      |  |

| PC1           |
|---------------|
| TP $(mg/m^3)$ |
| 20            |
| 20            |
| 20            |

- 2a & 2c yield TP targets considered more directly related to phytoplankton (cf. PC1)
- '2c' recommended (13 of 16 experts) for revised mainstem TP targets in Table 3.11-1
  - disagree: Ms. McArthur; Dr. Cooper; Dr. Canning
- 13 of 16 experts <u>did not</u> select Approach 2 to define TN targets in Table 3.11-1
  - 2c only modelled TP; lower predictive power of NIWA models yielding TN (Dr. Cox)
  - disagree: Mr. Kirk; Mr. Kessels; Dr. Mueller

## 2. Tributaries and subcatchments

- New nutrient thresholds to address that Table 3.11-1 only considers N-toxicity
- Approach 3 based on modelling of mitigations anticipated in first 10-years of PC1
  - modelled outputs expressed as:
    - concentrations; total loads; anthropogenic loads (Dr. Cox; Mr. Conland)
  - confirmed findings of policy mix modelling report (Doole et al., 2016) √
  - outputs provided for 'panels consideration' one option to use as 'short-term' targets
  - nutrient targets do not relate to managing an instream effect/response (i.e. attribute)
- most experts (12/16) supported use as 'short-term' targets for tributary (and Waikato mainstem) subcatchments
  - disagree: Mr. Vant; Dr. Scarsbrook; Dr. Cooper; Dr. Depree


### 2. Tributaries and subcatchments

- New nutrient thresholds to address that Table 3.11-1 only considers N-toxicity
- Approach 4 based on correlations of nutrients with multiple ecosystem responses
  - based on the technical work presented in evidence of Dr. Canning
- Approach 5 based on correlations between nutrients & periphyton (slime)
  - 5b based on 2016 NIWA *Instream plant and nutrient guidelines* (Ms. McArthur)

- Only 2-3 experts supported Approach 4 or 5 (Dr. Canning; Ms. McArthur; Mr Kessels)
  - uncertainty of 'global' nutrient thresholds for achieving ecosystem health outcomes
  - 'ecosystem responses' (i.e. periphyton & macroinvertebrates) are strongly supported as new attributes in PC1

## 3. Nitrate & Ammonia toxicity

- New 'classification' proposed to address inconsistent outcomes in PC1 (Mr. Conland; Dr. Depree; evidence Ms. McArthur)
  - i.e. similar sites with one (← ○) requiring >50% reduction and the other (← ○) <10% reduction</li>



- alternative approach to use a combination of 'no degradation' (i.e. no increase in current state concentrations) and nitrate and ammonia toxicity targets based on NPS-FM upper threshold limits of:
  - 'A-band' for Waikato mainstem (e.g. median nitrate <1.0 g/m<sup>3</sup>)
  - **'B-band' for tributaries** (e.g. median nitrate <2.4 g/m<sup>3</sup>)
- Recommendation of attribute document (not specifically commented on in run sheets)
- Recommend two additional mainstem sites for inclusion in Table 3.11-1
  - Tahorakuri upstream of Ohakuri (Mr. Conland)
  - Karapiro downstream boundary of upper Waikato FMU (Dr. Depree)

# Summary

Trophic state:
 Waikato mainstem

2. Trophic state/ecosystem health: tributaries

3. Toxicity - Waikato mainstem and tributaries catchment

| FMU   | Chla (r | ng/m³) | TN (m | g/m³)       | TP (mg/m³) |             |  |
|-------|---------|--------|-------|-------------|------------|-------------|--|
|       | PC1     | JWS    | PC1   | JWS<br>(1c) | PC1        | JWS<br>(2c) |  |
| Upper | 5       | 5      | 160   | 300         | 20         | 25          |  |
| mid   | 5       | 5      | 350   | 500         | 20         | 31          |  |
| lower | 5       | 5*     | 350   | 500         | 20         | 38          |  |

|                     | approach                                                                                         |
|---------------------|--------------------------------------------------------------------------------------------------|
| PC1                 | not currently included                                                                           |
| JWS<br>(approach 3) | TN/TP concentrations/loads based on modelling of mitigation anticipated in first 10-years of PC1 |

|                       | approach                                                                                                                                   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| PC1                   | Current state A-band = at least maintain (no degradation) Current state B-band, improve to A-band Current state C-band, improve to B-band  |
| JWS<br>(workstream 3) | Waikato mainstem: A-band (no degradation) Tributaries: A- & B-band, at least maintain current state Tributaries: C-band, improve to B-band |

# Appendix

# Waikato River lake stratification regime

Appendix 7 (Verburg 2012)

| Polymict | tic, clear         |          |          |               |                |           |              |           |           |
|----------|--------------------|----------|----------|---------------|----------------|-----------|--------------|-----------|-----------|
| Council  | Lake               | Altitude | Salinity | Water clarity | Stratification | TP        | TN           | Chl a     | Overall   |
| NRC      | Lake Rotokawau     | lowland  | fresh    | clear         | polymictic     | excellent | good         | good      | good      |
| ECAN     | Lake Hawdon        | upland   | fresh    | clear         | polymictic     | excellent | good         | excellent | excellent |
| ECAN     | Lake Ida           | upland   | fresh    | clear         | polymictic     | excellent | excellent    | excellent | excellent |
| ECAN     | Lake Sarah         | upland   | fresh    | clear         | polymictic     | excellent | excellent    | excellent | excellent |
| ECAN     | Maori Lake (front) | upland   | fresh    | clear         | polymictic     | excellent | good         | excellent | excellent |
| HBRC     | Lake Kaweka        | upland   | fresh    | clear         | polymictic     | excellent | excellent    | excellent | excellent |
|          | Ohakuri            | lowland  | fresh    | clear         | polymictic     | fair      | excellent    | good      | good      |
|          | Waipapa            | lowland  | fresh    | clear         | polymictic     | fair      | good         | good      | good      |
| ARC      | Lake Tomarata      | lowland  | fresh    | clear         | polymictic     | fair      | good         | fair      | fair      |
| ARC      | Lake Kereta        | lowland  | fresh    | clear         | polymictic     | fair      | unacceptable | fair      | fair      |
|          | Whakamaru          | lowland  | fresh    | clear         | polymictic     | fair      | excellent    | fair      | fair      |
|          | Karapiro           | lowland  | fresh    | clear         | polymictic     | fair      | good         | fair      | fair      |
| BOP      | Lake Rotoehu       | lowland  | fresh    | clear         | polymictic     | fair      | good         | fair      | fair      |