

NRP Process

Customer Enquiry (1 h)

- Explain NRP/PC1 processGet background info
- Send templates, information sheets and charge form

Follow Up/ Book Meeting

- Customer starts gathering records and evidence
- Help customer set up an OverseerFM account

Overseer Analysis(1-8 h)

- Enter farm data in Overseer
- Follow up on any missing information or questions
- Internal auditing process

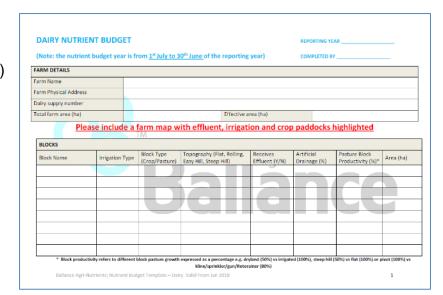
Farm Visit (1-4 h)

- Collect farm information
- -Cite (and take copies of) records and evidence
 - -Discuss next steps

Reports (1-4 h)

NRP Analysis (provisional)
 Summary of Decision
 Making (SDM) document
 Admin, billing, etc

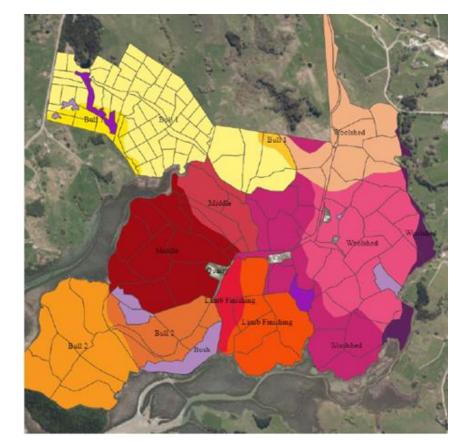
Submit to Council


- Check customer permissions
 - Change of owners?
 - Update if necessary
 - Renew overseer subscription?

Farm Information Needed

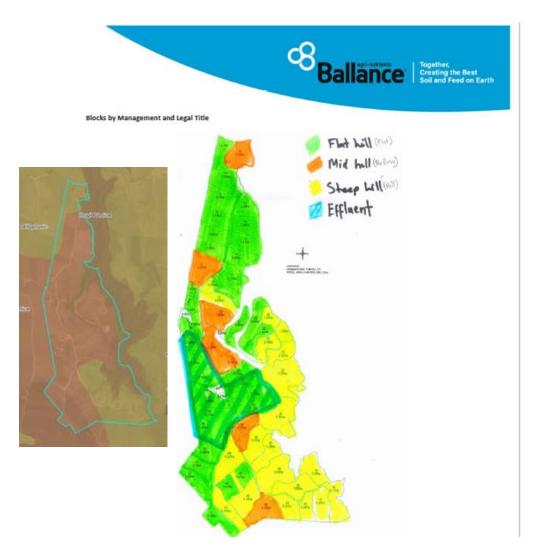
Verified with accounts, invoices, diaries, maps, receipts etc

- Basics (name, address, phone number, legal titles, area, etc)
- Management blocks
- Soil map and slope map
- Irrigation data (if applicable)
- Stock numbers (monthly, including age, breed, source and fate, any grazed off farm)
- Calving, lambing, weaning, dry-off dates
- Feed brought in and/or made on farm (type, amount, where made, stored, fed)
- Effluent system (storage, spread rate, area, solids, timing)
- Structures (feed pads, stand-off areas, barns, hours used, surface, effluent)
- Fertiliser (product, amount, date, area)
- Crops (type, area, yield, dates, cultivation, fertiliser, grazing, harvest, re sow)



Examples

Block name	Total N lost	N lost to water	N in drainage *	N surplus	Added N **
	kg N/yr	kg N/ha/yr	ppm	kg N/ha/yr	kg N/ha/yr
Non Effluent 🕜	1,654	27	5.6	269	223
Effluent 🕜	3,942	192	36.5	1,081	1,091
Maize 18 ha	1,561	87	13.2	-114	159
Other sources	194				
Whole farm	7,350	70			
Less N removed in wetland	0				
Farm output	7,350	70			


Block name	Total N lost	N lost to water	N in drainage *	N surplus	Added N **
	kg N/yr	kg N/ha/yr	ppm	kg N/ha/yr	kg N/ha/yr
Bull 1 - Aponga	1,450	22	5.0	104	63
Bull 1 - Tanoa	142	20	5.1	103	63
Bull 1 - Arapohue	42	19	6.0	98	63
Bull 2 - Aponga	755	17	5.5	93	63
Bull 2 - Arapohue	304	16	N/A	89	63
Lamb - Aponga	459	18	6.0	92	63
Lamb - Arapohue	144	21	6.4	90	63
Middle - Aponga	157	9	N/A	60	26
Middle - Arapohue	458	10	N/A	59	26
Woolshed - Aponga	474	11	3.5	69	26
Woolshed - Arapohue	428	13	3.9	68	26
Woolshed - Konoti	717	13	3.9	68	26
Woolshed - Whakapara	122	17	3.9	69	26
Trees and Scrub 1	32	3	N/A		
Riparian 1	13	3	N/A		
Other sources	125				
Whole farm	5,822	15			
Less N removed in wetland	0				
Farm output	5,822	15			

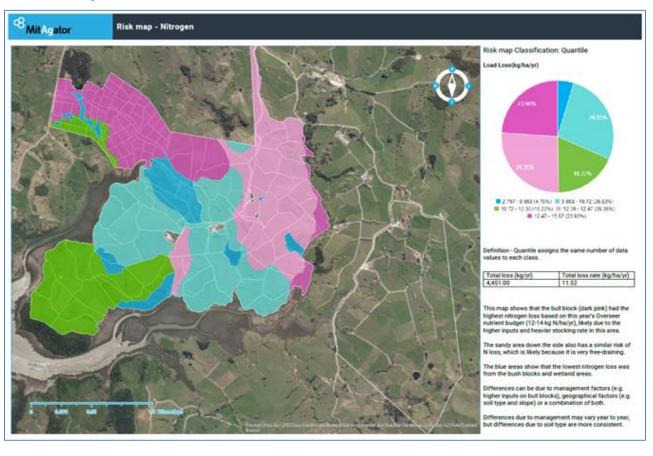
Typical NRP Report

Overseer Block Nitrogen Report (2014/15)

Block	Total N Loss (kg/yr)	N Loss to Water (kg/ha/yr)	N in Drainage (ppm)	N Surplus (kg/ha/yr)	N Added (kg/ha/yr)
Effluent Orua_13a.1	2,188	81	11.4	342	315
Flat Orua_13a.1	3,228	63	9.3	243	196
Flat Ngak_6b.2	400	64	9.4	243	196
Rolling Orua_13a.1	982	58	8.9	241	196
Rolling Ngak_6b.2	462	56	8.9	238	196
Hill Orua_13a.1	2,032	56	N/A	239	196
Hill Ngak_6b.2	1,767	54	N/A	237	196
Fodder Crop Rape	1,707	213	27.2	-03	22
Trees and Scrub 1	74	3	N/A		
Other sources	450				
Whole farm	13,289	60			
Forecast TAND/NRP:	13,289	59.6			

Observation

The NRP analysis is a starting point in terms of nitrogen management. Further analysis is recommended to assess possible mitigation strategies and develop a Farm Environment Plan (FEP). The following critical source areas (potential targets for future reduction) were identified:


- The fodder crop (rape) had the highest nitrogen loss (213 kg N/ha). This is likely due to cultivation breaking down N reserves in the soil, and the fallow period in early spring is likely to leave bare soil exposed to heavy rain, which increases the chance of nutrients leaching.
- Of the pastoral blocks, the highest N loss is from the effluent area (81 kg N/ha/yr), due to the amount of N added in effluent and the sump (no storage) meaning this area is likely to receive excess irrigation during wet periods. Potassium (k) levels are also increasing.
- The Pumice soils have a high risk of P loss, especially on the hills, as P run-off increases with slope, and in areas with high Olsen P values.
 Soil tests results form 2014 show Olsen P values of 88 in the non-effluent area, this is well above the agronomic optimum of 30-40.

According to Healthy Rivers Plan Change One, the FEP for this property is due 1 March 2022. Farm Sustainability Services would be happy to complete your FEP requirements for you, so please contact us for more information about this process. The FEPs we complete include MitAgator Risk Maps for Nitrogen loss as well as Phosphorus, Sediment and E.coli, the four contaminants requiring mitigation under PC 1. In the case of a farm sale, new owners or potential buyers can also contact Farm Sustainability Services to carry out scenario analysis for proposed farm system changes.

Next Steps:

Risk Maps, FEPs, Scenarios, Actions...

Sections of FEP:
Risks and Mitigations/Actions

Property Details/Map Risk Analysis LMU strengths/weaknesses

Effluent and Infrastructure
Biodiversity
Water Use and Management
Waste Management
Soil and Land Management
Nutrient Management
Cropping
Waterways
Irrigation

