# Proposed Waikato Regional Plan Change 1 – Waikato and Waipā River Catchments

**Notified version (October 2016)** 

# Officer's "Tracked Changes" Version Hearing Block 1 Recommendations Only

Red tracked changes are insertions or deletions due to Variation 1

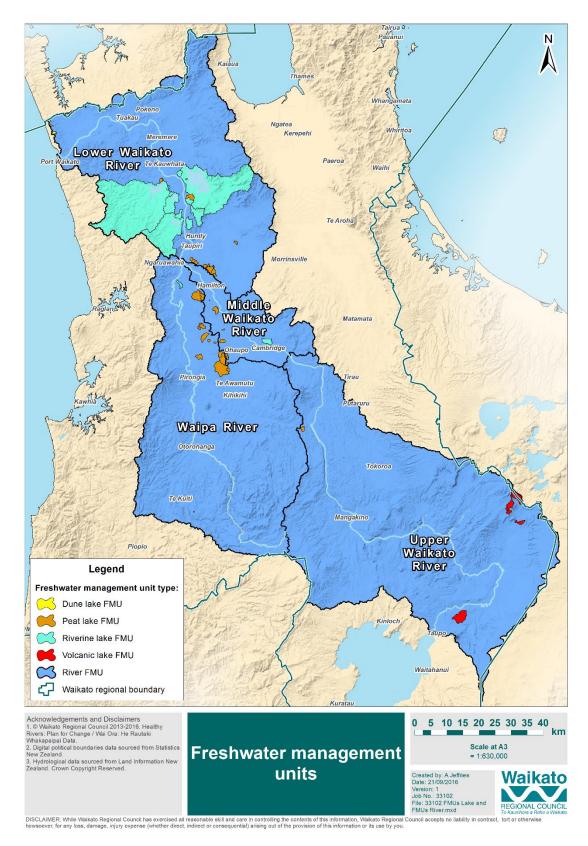
Black tracked changes are insertions or deletions recommended by the Council Officers

# Important:

- 1. Relevant pages only (other pages will be addressed through future recommendations)
- 2. In case of any conflicts, errors or omissions, the Section 42A Report prevails.

# 3.11 Waikato and Waipa River Catchments/Ngā Riu o ngā Awa o Waikato me Waipā

#### Area covered by Chapter 3.11/Ngā Riu o ngā Awa o Waikato me Waipā


This Chapter 3.11 applies to the Waikato and Waipa River catchments. The map shown in Map 3.11-1 shows the general catchment boundary. This Chapter is additional to all other parts of the <u>Waikato Regional</u> Plan. Where there are any inconsistencies, Chapter 3.11 prevails.

Map 3.11-1 shows the general catchment boundary and includes the boundaries of each Freshwater Management Unit<sup>^</sup> (FMU): The FMUs are:

- Upper Waikato River
- Middle Waikato River
- Lower Waikato River
- Waipa River
- Peat Lakes
- Riverine Lakes
- Dune Lakes
- Volcanic Lakes

FMUs are required by central government's National Policy Statement for Freshwater Management 2014. FMUs enable monitoring of progress towards meeting targets^ and limits^.

The Plan maps of the Waikato and Waipa River catchments are available electronically or for viewing at Waikato Regional Council offices on request.



Map 3.11-1: Map of the Waikato and Waipa River catchments, showing Freshwater Management Units

#### Updated map showing corrected regional boundaries, legend and lake colours to be inserted

# **3.11.1** Values and uses for the Waikato and Waipa Rivers/Ngā Uara me ngā Whakamahinga o ngā Awa o Waikato me Waipā

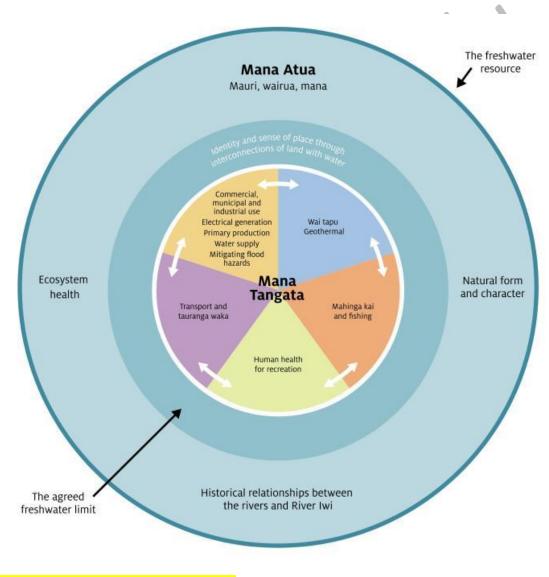
The National Policy Statement – Freshwater Management Policy CA2 requires certain steps to be taken in the process of setting limits^. These include establishing the values^ that are relevant in a FMU^, identifying the attributes^ that correspond to those values^, and setting objectives based on desired attribute states^. This section describes values and uses for the Waikato and Waipa Rivers, to provide background to the objectives and limits^ in later sections.

This section describes the values and uses for the Waikato and Waipā Rivers. The values and uses reflect the Vision and Strategy for the Waikato River. The values and uses set out below apply to all FMU's unless explicitly stated, and provide background to the freshwater objectives, and the attributes and attribute states outlined in Table 3.11-1.

## Vision and Strategy for the Waikato River/Te Ture Whaimana o Te Awa o Waikato<sup>1</sup>

"Our vision is for a future where a healthy Waikato River sustains abundant life and prosperous communities who, in turn, are all responsible for restoring and protecting the health and wellbeing of the Waikato River, and all it embraces, for generations to come."<sup>2</sup>

The values below have been prepared and are supported by the Collaborative Stakeholder Group.


<sup>&</sup>lt;sup>1</sup> The Nga Wai o Maniapoto (Waipa River) Act 2012 extended Te Ture Whaimana o te Awa o Waikato to also cover the Waipa River and its catchment

<sup>&</sup>lt;sup>2</sup> The Vision and Strategy is intended by Parliament to be the primary direction setting document for the Waikato River and activities within its catchment affecting the Waikato River. Values and uses are intrinsic to, and embedded in the Vision and Strategy.

# Te Mana o te Wai: Mana Atua, Mana Tangata

Values can be thought of in terms of Mana Atua and Mana Tangata, which represent Te Mana o te Wai<sup>3</sup>. Mana Atua represents the intrinsic values of water including the mauri (the principle of life force), wairua (the principle of spiritual dimension) and inherent mana (the principle of prestige, authority) of the water and its ecosystems in their natural state. Mana Tangata refers to values of water arising from its use by people for economic, social, spiritual and cultural purposes. Mana Atua and Mana Tangata values encompass past, present and future.

A strong sense of identity and connection with land and water (hononga ki te wai, hononga ki te whenua) is apparent through the Vision and Strategy and the many values associated with the rivers. This is represented in the figure below as a unifying value that provides an interface between the Mana Atua and Mana Tangata values.



Note: New diagram from Variation 1 to be inserted.

<sup>&</sup>lt;sup>3</sup> The National Policy Statement for Freshwater Management 2014 states that the aggregation of a range of community and tangata whenua values, and the ability of fresh water to provide for them over time, recognises the national significance of fresh water and Te Mana o te Wai.

# Hononga ki te wai, hononga ki te whenua - Identity and sense of place through the interconnections of land with water

- The rivers contribute to a sense of community and sustaining community wellbeing.
- The rivers are an important part of whānau/family life, holding nostalgic feelings and memories and having deep cultural and historical significance.
- For River Iwi and other iwi, respect for the rivers, wetlands and springs lies at the heart of the spiritual and physical wellbeing of iwi and their tribal identity and culture. The river, wetlands and springs are is not separate from the people but part of the people, "Ko au te awa, ko te awa ko au" (I am the river and the river is me).
- Whanaungatanga is at the heart of iwi relationships with rivers, wetlands and springs. Te taura tangata is the cord of kinship that binds iwi to rivers, wetlands and springs. It is a braid that is tightly woven, tying in all its strands. It is unbroken and infinite, forming the base for kaitiakitanga and the intergenerational role that iwi have as kaitiaki.
- The rivers are a shared responsibility, needing collective stewardship: kaitiakitanga working together to restore the rivers. There is also an important intergenerational equity concept within kaitiakitanga.
- Mahitahi (collaborative work) encourages us all to work together to achieve common goals.

## 3.11.1.1 Mana Atua – Intrinsic values

#### Intrinsic values <u>Ancestry and</u> History

# Ko te whakapapa o ngā iwi ki ōna awa tūpuna Ko ngā hononga tūpuna me ngā hononga o mua i waenga i ngā iwi o te awa me ētehi atu iwi me ngā awa, ngā repo me ngā puna / Ancestral and Historical relationships connections between the rivers, wetlands, springs and River Iwi and other iwi

Ko ngā kōrero <u>tūpuna me ngā Kōrero o Muao neherā</u> / <u>Ancestry and</u> History

| <del>Each</del> River Iwi <u>and</u>           | <ul> <li>The Rrivers, wetlands and springs have always been seen as taonga (treasures)</li> </ul> |
|------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <u>other iwi have</u> <del>has</del> their own | to all River Iwi <u>and other iwi</u> .                                                           |
| unique and intergenerational                   | The Rrivers, wetlands and springs have always given River Iwi and other iwi a                     |
| relationship with the rivers,                  | strong sense of identity and connection with the land and water.                                  |
| wetlands and springs.                          | Rivers, wetlands and springs were used holistically; River Iwi and other iwi                      |
|                                                | understood the functional relationships with and between all parts of the rivers,                 |
|                                                | wetlands and springs, spiritually and physically as kaitiaki.                                     |
|                                                | Tribal taniwha and tupua dwell in the rivers which are also the location of                       |
|                                                | continued spiritual and cultural traditions and practices maintained over the                     |
|                                                | many centuries.                                                                                   |
|                                                | Iwi tupuna inhabited a rohe that teemed with life in the rivers, wetlands and                     |
|                                                | springs. These resources were subject to access and use rights as an essential                    |
|                                                | part of kaitiakitanga.                                                                            |
|                                                | Iwi strive to maintain and restore these relationships despite the modification                   |
|                                                | and destruction that has occurred through different types of development along                    |
|                                                | affecting the rivers, wetlands and springs.                                                       |
|                                                |                                                                                                   |

#### Intrinsic values - Ecosystem health

## Ko te hauora me te mauri o te wai / The health and mauri of water

Ecosystem health

| The Waikato and Waipa<br>catchments support resilient<br>freshwater ecosystems and<br>healthy freshwater populations | • | Clean fresh water restores and protects aquatic native vegetation to provide<br>habitat and food for native aquatic species and for human activities or needs,<br>including swimming and drinking.<br>Clean fresh water restores and protects macroinvertebrate communities for |
|----------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of indigenous plants and animals.                                                                                    | - | their intrinsic value and as a food source for native fish, native birds and introduced game species.<br>Clean fresh water supports native freshwater fish species.                                                                                                             |

| • | Wetlands and floodplains provide water purification, refuge, feeding and          |
|---|-----------------------------------------------------------------------------------|
|   | breeding habitat for aquatic species, habitat for water fowl and other ecosystem  |
|   | services such as flood attenuation.                                               |
| - | Fresh water contributes to unique habitats including peat lakes, shallow riverine |
|   | lakes and karst formations which all support unique biodiversity.                 |
| • | Rivers and adjacent riparian margins have value as ecological corridors.          |

#### Intrinsic values - Natural form and character

# Ko te hauora me te mauri o te taiao / The health and mauri of the environment

Natural form and character

| Retain the integrity of the    | • | The Lakes, rivers and wetlands have amenity and naturalness values, including    |
|--------------------------------|---|----------------------------------------------------------------------------------|
| lakes, rivers and wetlands     |   | native vegetation, undeveloped stretches, and significant sites.                 |
| within the landscape and its   | • | People are able to enjoy the natural environment; it contributes to their health |
| aesthetic features and natural |   | and wellbeing.                                                                   |
| qualities for people to enjoy. | • | The rivers are an ecological and cultural corridor.                              |
|                                | • | The lakes, rivers and wetlands as a whole living entity.                         |

## 3.11.1.2 Mana Tangata – Use values

## Use values - Wai tapu

# Ko ngā wai tapu <u>me ngā wai kino</u> / Sacred <u>and harmful</u> waters

## Wai tapu <mark>and wai kino</mark>

| Area of water body set aside      | <ul> <li>The Lakes, rivers and wetlands are a place for sacred rituals, wairua, healing,</li> </ul> |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| for spiritual activities that     | spiritual nurturing and cleansing.                                                                  |
| support spiritual, cultural and   | <ul> <li>The Lakes, rivers and wetlands provide for cultural and heritage practices and</li> </ul>  |
| physical wellbeing <u>or have</u> | cultural wellbeing, particularly at significant sites.                                              |
| properties that                   | <ul> <li>The Lakes, rivers and wetlands have different states of wai tapu and wai kino</li> </ul>   |
| require additional                | that are adhered to and respected.                                                                  |
| caution or care.                  |                                                                                                     |
| Use values – Geothermal           | (10)                                                                                                |
| Ko ngā Ngāwhā / Geotherm          | al                                                                                                  |
| Geothermal                        |                                                                                                     |

| A valued resource that is<br>naturally gifted to sustain<br>certain activities (meeting<br>spiritual and physical needs). | • | Geothermal areas and their various resources were prized by tūpuna (ancestors) for their many uses and are still valued and used today.<br>Geothermal areas of the river have natural form and character, and unique flora found only in the geothermal environment. |
|---------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           | • | Geothermal areas are a special microclimate.                                                                                                                                                                                                                         |

#### Use values - Mahinga kai

# Ko ngā wāhi mahinga kai / Food gathering, places of food

Mahinga kai

| The ability to access the        | • | The Lakes, rivers and wetlands provide for freshwater native species, native  |
|----------------------------------|---|-------------------------------------------------------------------------------|
| Waikato and Waipa Rivers,        |   | vegetation, and habitat for native animals.                                   |
| lakes, and wetlands and their    | • | The Lakes, rivers and wetlands provide for freshwater game and introduced kai |
| tributaries to gather sufficient |   | species.                                                                      |

| quantities of kai (food) that is | • | The Lakes, rivers and wetlands provide for cultural wellbeing, knowledge       |
|----------------------------------|---|--------------------------------------------------------------------------------|
| safe to eat and meets the social |   | transfer, intergenerational harvest, obligations of manaakitanga (to give      |
| and spiritual needs of their     |   | hospitality to, respect, generosity and care for others) and cultural          |
| stakeholders.                    |   | opportunities, particularly at significant sites.                              |
|                                  | • | The rivers should be safe to take food from, both fisheries and kai.           |
|                                  | • | The Lakes, rivers and wetlands support aquatic life, healthy biodiversity,     |
|                                  |   | ecosystem services, flora and fauna and biodiversity benefits for all.         |
|                                  | • | The rivers are a corridor.                                                     |
|                                  | • | The Lakes, rivers and wetlands provide resources available for use which could |
|                                  |   | be managed in a sustainable way.                                               |
|                                  | • | The rivers provide for recreation needs and for social wellbeing.              |

#### Use values Human health for recreation

# Ko te hauora me te mauri o ngā tāngata / The health and mauri of the people

Human health for recreation

| The Lakes and rivers are a place | • | The Lakes and rivers provide for recreational use, social needs and social                     |
|----------------------------------|---|------------------------------------------------------------------------------------------------|
| to swim and undertake            |   | wellbeing, are widely used by the community, and are a place to relax, play,                   |
| recreation activities in an      |   | exercise and have an active lifestyle.                                                         |
| environment that poses           | • | An important value for the <u>lakes and</u> rivers is cleanliness; the <u>lakes and</u> rivers |
| minimal risk to health.          |   | should be safe for people to swim in.                                                          |
|                                  | • | The lakes and rivers provide resources available for use which could be                        |
|                                  |   | managed in a sustainable way.                                                                  |

#### Use values Transport and tauranga waka

# He urungi / Navigation

Transport and tauranga waka

| All communities can use the     | • | The Lakes and rivers provide for recreational use (navigation), and sporting   |
|---------------------------------|---|--------------------------------------------------------------------------------|
| lakes and rivers to pilot their |   | opportunities.                                                                 |
| vehicles and waka and navigate  |   | The Lakes and rivers are a corridor, mode of transport and mode of             |
| to their destinations.          |   | communication.                                                                 |
|                                 |   | The Lakes and rivers provide for culture and heritage, cultural wellbeing, and |
|                                 |   | social wellbeing, particularly at significant sites.                           |

#### **Use values - Primary production**

# Ko ngā mahi māra me ngā mahi ahu matua / Cultivation and primary production

# Primary production

| The rivers support regionally<br>and nationally significant<br>primary production in the | <ul> <li>The rivers support a wide variety of primary production in the catchment,<br/>including dairy, meat, wool, horticulture and forestry.</li> <li>Due to the economies of scale of these industries, other service sectors, such as</li> </ul>  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| catchment (agricultural,                                                                 | agritech, aviation and manufacturing, are able to operate.                                                                                                                                                                                            |
| horticultural, forestry). These industries contribute to the                             | <ul> <li>These industries combined contribute significantly to regional and national GDP,<br/>exports, food production and employment.</li> </ul>                                                                                                     |
| economic, social and cultural<br>wellbeing of people and<br>communities, and are the     | <ul> <li>The rivers and the surrounding land offer unique opportunities for many<br/>communities and industries to operate, contributing to the lifestyle and sense of<br/>community, pride and culture in rural <u>and urban</u> Waikato.</li> </ul> |
| major component of wealth                                                                |                                                                                                                                                                                                                                                       |
| creation within the region.                                                              |                                                                                                                                                                                                                                                       |
| These industries and associated                                                          |                                                                                                                                                                                                                                                       |
| primary production also                                                                  |                                                                                                                                                                                                                                                       |
| support other industries and                                                             |                                                                                                                                                                                                                                                       |

| communities within rural and |  |
|------------------------------|--|
| urban settings.              |  |

#### Water supply

## Ko ngā hapori wai Māori / Municipal and domestic water supply

Water supply

| The rivers provide for                  | • | The catchments' surface and subsurface water is of a quality that can be      |
|-----------------------------------------|---|-------------------------------------------------------------------------------|
| community water supply,                 |   | effectively treated to meet appropriate health standards for both potable and |
| municipal supply <u>and</u> , drinkable |   | non-potable uses.                                                             |
| water supply-and health.                |   |                                                                               |

#### Use values Commerical, municipal and industrial use

## Ko ngā āu putea / Economic or commercial development

Commercial, municipal and industrial use

| The rivers <u>, lakes, and wetlands</u><br>provide economic | Fresh water is used for industrial and municipal processes, which rely on the assimilative capacity for discharges to surface water bodies. In addition:                                                                                                                                                  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| opportunities to people,                                    |                                                                                                                                                                                                                                                                                                           |
| businesses and industries.                                  | <ul> <li>The <u>Lakes</u>, rivers <u>and wetlands</u> provide for economic wellbeing, financial and<br/>economic contribution, individual businesses and the community and the<br/>vibrancy of small towns. They are working <u>lakes</u>, rivers<u> and wetlands</u>; they<br/>create wealth.</li> </ul> |
|                                                             | <ul> <li>Those industries are important to the monetary economy of Waikato region,<br/>enabling a positive brand to promote to overseas markets.</li> </ul>                                                                                                                                               |
|                                                             | <ul> <li>The Lakes, rivers and wetlands provide for domestic and international tourism.</li> <li>Promotion of a clean, green image attracts international and domestic visitors.</li> </ul>                                                                                                               |
|                                                             | <ul> <li>The Lakes, rivers and wetlands provide assimilative capacity for wastewater<br/>disposal, flood and stormwater, and ecosystem services through community</li> </ul>                                                                                                                              |
|                                                             | schemes or on site disposal.                                                                                                                                                                                                                                                                              |

#### Use values Electricty generation **Electricity generation** The river provides for reliable, Waikato hydro scheme extends over 186km, comprising Lake Taupō storage, renewable hydro and dams, lakes, and power stations. Tongariro Power scheme adds 20 per cent to geothermal energy sources and natural inflows to Lake Taupo. thermal generation, securing Huntly Power Station's role in the New Zealand electricity system is pivotal, national self-reliance and particularly when weather dependent renewable generation is not available. resilience. Fresh water is used for cooling and process water. Geothermal power stations located on multiple geothermal systems use fresh New Zealand's social and water for cooling, process water and drilling. economic wellbeing are dependent on a secure, costeffective electricity supply system. Renewable energy contributes to our international competitive advantage. Electricity also contributes to the health and safety of people and communities.

#### Use values Mitigating flood hazards

Mitigating flood hazards

| Flood management systems | • | River engineering, including stopbanks and diversions, protect land and |
|--------------------------|---|-------------------------------------------------------------------------|
| protect land used and    |   | infrastructure from damage by flooding.                                 |
| inhabited by people and  |   |                                                                         |
| livestock.               |   |                                                                         |

# 3.11.2 Objectives/Ngā Whāinga

# Objective 1: Long-term restoration and protection of water quality for each sub-catchment and Freshwater Management Unit/Te Whāinga 1: Te whakaoranga tauroa me te tiakanga tauroa o te kounga wai ki ia riu kōawaawa me te Wae Whakahaere i te Wai Māori

By 2096 <u>at the latest</u>, <u>a reduction in the</u> discharges of nitrogen, phosphorus, sediment and microbial pathogens to land and water results in achievement of the restoration and protection of the <u>Waikato and Waipā Rivers</u>, <u>such that</u> of the 80-year water quality attribute <u>targets states</u> in Table 3.11-1 <u>are met</u>.

# Objective 2: Social, economic and cultural wellbeing is maintained in the long term/Te Whāinga 2: Ka whakaūngia te oranga ā-pāpori, ā-ōhanga, ā-ahurea hoki i ngā tauroa

Waikato and Waipa communities and their economy benefit from the restoration and protection of water quality in the Waikato <u>and Waipā</u> River catchments, which enables the people and communities to continue to provide for their social, economic and cultural wellbeing.

# Objective 3: Short-term improvements in water quality in the first stage of restoration and protection of water quality for each sub-catchment and Freshwater Management Unit/Te Whāinga 3: Ngā whakapainga taupoto o te kounga wai i te wāhanga tuatahi o te whakaoranga me te tiakanga o te kounga wai i ia riu kōawāwa me te Wae Whakahaere Wai Māori

Actions put in place and implemented by 2026 to reduce <u>diffuse and point source</u> discharges of nitrogen, phosphorus, sediment and microbial pathogens, are sufficient to achieve <u>the short-term water quality attribute states in Table 3.11-1</u>. <del>ten percent of the required change between current water quality and the 80 year water quality attribute targets in Table 3.11-1</del>. A ten percent change towards the long term water quality improvements is indicated by the short term water quality attribute targets in Table 3.11-1.

# Objective 4: People and community resilience/Te Whāinga 4: Te manawa piharau o te tangata me te hapori

A staged approach to change enables people and communities to undertake adaptive management to continue to provide for their social, economic and cultural wellbeing in the short term while:

- a. considering the values and uses when taking action to achieve the attribute^ targets^ for the Waikato and Waipa Rivers in Table 3.11-1; and
- b. recognising that further contaminant reductions will be required by subsequent regional plans and signalling anticipated future management approaches that will be needed to meet Objective 1.

OR

# Objective 4: People and community resilience/Te Whāinga 4: Te manawa piharau o te tangata me te hapori

A staged approach to <u>reducing contaminant losses</u> <del>change</del> enables people and communities to <del>undertake adaptive</del> <del>management to</del> continue to provide for their social, economic and cultural wellbeing in the short term while:

- a. considering the values and uses when taking action to achieve the attribute<sup>^</sup> targets<sup>^</sup> states for the Waikato and Waipa Rivers in Table 3.11-1; and
- b. recognising that further contaminant reductions will be required by subsequent regional plans and signalling anticipated future management approaches that will be needed in order to meet Objective 1.

# Objective 5<del>: Mana Tangata – protecting and restoring tangata whenua values/Te Whāinga 5: Te</del> Mana Tangata – te tiaki me te whakaora i ngā uara o te tangata whenua

Tangata whenua values are integrated into the co-management of the rivers and other water bodies within the catchment such that:

- a. tangata whenua have the ability to:
  - i. manage their own lands and resources, by exercising mana whakahaere, for the benefit of their people; and
  - ii. actively sustain a relationship with ancestral land and with the rivers and other water bodies in the catchment; and
- b. new impediments to the flexibility of the use of tangata whenua ancestral lands are minimised; and
- c. improvement in the rivers' water quality and the exercise of kaitiakitanga increase the spiritual and physical wellbeing of iwi and their tribal and cultural identity.

#### Objective 6: Whangamarino Wetland/Te Whāinga 6: Ngā Repo o Whangamarino

- <u>Nitrogen, phosphorus, sediment and microbial pathogen loads in the catchment of Whangamarino Wetland are reduced</u> in the short term, to make progress towards the long-term restoration of Whangamarino Wetland; and
- b. <u>The management of contaminant loads entering Whangamarino Wetland is consistent with the achievement of the</u> water quality attribute^targets^ in Table 3.11 1.
- OR

## Objective 6: Whangamarino Wetland/Te Whāinga 6: Ngā Repo o Whangamarino

<u>a.</u> Nitrogen, phosphorus, sediment and microbial pathogen loads in the catchment of Whangamarino Wetland are reduced in the short term, to make progress towards the long-term restoration of Whangamarino Wetland; and
 <u>b.</u> The management of contaminant loads entering Whangamarino Wetland is consistent with the achievement of the water quality attribute^targets^ in Table 3.11-1.

#### Principal Reasons for Adopting Objectives 1 6/Ngā Take Matua me Whai ngā Whāinga 1 ki te 6

#### **Reasons for adopting Objective 1**

**Objective 1** sets long term limits^ for water quality consistent with the Vision and Strategy. Objective 1 sets aspirational 80year water quality targets^, which result in improvements in water quality from the current state monitored in 2010-2014. The water quality attributes^ listed in Table 3.11-1 that will be achieved by 2096 will be used to characterise the water quality of the different FMUs when the effectiveness of the objective is assessed. <u>Objective 1 sets the overall context for what is to</u> <u>be achieved in terms of water quality improvements. There is not any hierarchy of Objectives 1 to 6</u>

#### Reasons for adopting Objective 2

**Objective 2** sets the long term outcome for people and communities, recognising that restoration and protection of water quality will continue to support communities and the economy. The full achievement of the Table 11-1 2096 water quality attribute^ targets^ may require a potentially significant departure from how businesses and communities currently function, and it is important to minimise social disruption during this transition.

#### **Reasons for adopting Objective 3**

**Objective 3** sets short term goals for a 10-year period, to show the first step toward full achievement of water quality consistent with the Vision and Strategy.

The effort required to make the first step may not be fully reflected in water quality improvements that are measureable in the water in 10 years. For this reason, the achievement of the objective will rely on measurement and monitoring of actions taken on the land to reduce pressures on water quality.

Point source discharges are currently managed through existing resource consents, and further action required to improve the quality of these discharges will occur on a case by case basis at the time of consent renewal, guided by the targets and limits set in Objective 1.

#### **Reasons for adopting Objective 4**

**Objective 4** provides for a staged approach to long-term achievement of the Vision and Strategy. It acknowledges that in order to maintain the social, cultural and economic wellbeing of communities during the 80-year journey, the first stage <u>(the short term 10 year period)</u> must ensure that overall costs to people can be sustained.

In the future, a property-level allocation of contaminant discharges may be required. Chapter 3.11 sets out the framework for collecting the required information so that the most appropriate approach can be identified. Land use type or intensity at July 2016 will not be the basis for any future allocation of property-level contaminant discharges. Therefore, consideration is needed of how to manage impacts in the transition.

Objective 4 seeks to minimise social disruption in the short term, while encouraging preparation for possible future requirements.

#### **Reasons for adopting Objective 5**

**Objective 5** seeks to ensure that this Plan recognises and provides for the relationship of tangata whenua with ancestral lands, by ensuring the other provisions of Chapter 3.11 do not provide a further impediment to tangata whenua making optimal use of their land. Historic impediments included customary tenure in the nineteenth century, public works, rating law, Te Ture Whenua Māori Act, and confiscation. Some impediments or their effects continue currently, including issues of governance, fragmentation and compliance with central and local government regulations such as regional and district plans, or the emissions trading scheme. Land relevant to this objective is land returned through Treaty of Waitangi settlement, and land under Māori title that has multiple owners.

#### **Reasons for adopting Objective 6**

**Objective 6** seeks to recognise the significant value of Whangamarino Wetland, a Ramsar site of international importance, and the complexity of this wetland system. It seeks to recognise that the bog ecosystems (which are particularly sensitive to discharges of contaminants) need protection over time. The effort required to restore Whangamarino Wetland over 80 years is considerable and as a minimum needs to halt and begin to reverse the decline in water quality in the first 10 years. This objective describes how wetland restoration needs to be supported by restoration of the Lower Waikato Freshwater Management Unit sub catchments that flow into Whangamarino Wetland.

# Policy 14: Lakes Freshwater Management Units/Te Kaupapa Here 14: Ngā Wae Whakahaere Wai Māori i ngā Roto

Restore and protect lakes by 2096 through the implementation of a tailored lake-by-lake approach, guided by Lake Catchment Plans prepared over the next 10 years, which will include collecting and using data and information to support improving the management of land use activities in the lakes Freshwater Management Units^.

Doc # 13362402 [Master Clean Word Version] [Master clean word version – may contain errors]

# 3.11.1 List of Tables and Maps/Te Rārangi o ngā Ripanga me ngā Mahere

Table 3.11-1: Short term <u>water quality limits and targets</u> and long term numerical <u>desired</u> water quality <u>states</u> targets for the Waikato and Waipa River catchments/Ngā whāinga ā-tau taupoto, tauroa hoki mō te kounga wai i te riu o ngā awa o Waikato me Waipā

Table 3.11-2 List of sub-catchments showing Priority 1, Priority 2, and Priority 3 sub-catchments/Te rārangi o ngā riu kōawaawa e whakaatu ana i te riu kōawaawa i te Taumata 1, i te Taumata 2, me te Taumata 3

Map 3.11-1: Map of the Waikato and Waipa River catchments, showing Freshwater Management Units

Map 3.11-2: Map of the Waikato and Waipa River catchments, showing sub-catchments

# Table 3.11-1: Short term <u>water quality limits and targets</u> and long term numerical <u>desired</u> water quality states <del>targets</del> for the Waikato and Waipa River catchments/Ngā whāinga ā-tau taupoto, tauroa hoki mō te kounga wai i te riu o ngā awa o Waikato me Waipā

Within the Waikato and Waipa River catchments, these targets <u>and desired water quality states</u> are used in decision-making processes guided by the objectives in Chapter 3.11 and for future monitoring of changes in the state of water quality within the catchments. With regard to consent applications for diffuse discharges or point source discharges of nitrogen, phosphorus, sediment and microbial pathogens, it is not intended, nor is it in the nature of water quality targets <u>and the desired water quality states</u>, that they be used directly as receiving water compliance limits/standards. Reference should also be made to Method 3.2.4.1.

#### Explanatory note to Table 3.11-1

The tables set out the concentrations (all attributes except clarity) or visibility distance (clarity attribute) to be <u>maintained</u> or achieved by actions taken in the short term and <del>at</del> over 80 years for rivers and tributaries, and at 80 years for lakes FMUs. Where water quality is currently high (based on 2010-2014 monitoring data), the short term <u>targets</u> and 80-year <u>desired</u> <u>water quality states</u> targets will be the same as the current state and there is to be no decline in quality (that is, no increase in attribute concentration or decrease in clarity). Where water quality needs to improve, the <u>water quality states</u> values to be achieved at a site indicate a short term and long term reduction in concentration or increase in clarity compared to the current state.

For example, at Otamakokore Stream, Upper Waikato River FMU:

- the current state value for median nitrate is 0.740 mgNO3-N/L. The short term <u>targets</u> and 80-year <u>desired water quality</u> states targets are set at 0.740 mgNO3-N/Lto reflect that there is to be no decline in water quality
- the current state value for E.coli is 696 E.coli/100ml. The 80-year <u>desired water quality state</u> target is set at 540 E.coli/100ml and the short term target is set at 10% of the difference between the current state value and the 80 year <u>desired water quality state</u> target.

The achievement of the attribute targets in Table 3.11-1 will be determined through analysis of 5-yearly monitoring data. The variability in water quality (such as due to seasonal and climatic events) and the variable response times of the system to implementation of mitigations may mean that the targets are not observed for every attribute at all sites in the short term.

The effect of some contaminants (particularly nitrogen) discharged from land has not yet been seen in the water. This means that in addition to reducing discharges from current use and activities, further reductions will be required to address the load to come that will contribute to nitrogen loads in the water. There are time lags between contaminants discharged from land uses and the effect in the water. For nitrogen in the Upper Waikato River particularly, this is because of the time taken for nitrogen to travel through the soil profile into groundwater and then eventually into the rivers. This means that there is some nitrogen leached from land use change that occurred decades ago that has entered groundwater, but has not yet entered the Waikato River. In some places, water quality (in terms of nitrogen) will deteriorate before it gets better. Phosphorus, sediment and microbial pathogens and diffuse discharges from land have shorter lag times, as they reach water from overland flow. However, there will be some time lags for actions taken to address these contaminants to be effective (for example tree planting for erosion control).

## Table 3.11-1: Upper Waikato River Freshwater Management Unit

|                                    |                                         |                               |                       |                                 |                       |                                   |                       |                                    |                       |                              | Att        | ributes       |                                                                   |                             |                                          |                                    |                                  |               |                                    |               |                    |
|------------------------------------|-----------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------|-----------------------------------|-----------------------|------------------------------------|-----------------------|------------------------------|------------|---------------|-------------------------------------------------------------------|-----------------------------|------------------------------------------|------------------------------------|----------------------------------|---------------|------------------------------------|---------------|--------------------|
| Catch<br>ment<br>numb<br><u>er</u> | Site                                    | Ann<br>Mec<br>Chlorc<br>a (mg | lian<br>ophyll        | Ann<br>Maxir<br>Chloro<br>a (mg | num<br>phyll          | Anr<br>Mea<br>To<br>Nitro<br>(mg, | dian<br>tal<br>ogen   | Ann<br>Med<br>Tot<br>Phosp<br>(mg/ | lian<br>tal<br>horus  | Annual N<br>Nitrate<br>NO₃-N | (mg        | Niti<br>(mg   | al 95 <sup>th</sup><br>entile<br>rate<br>NO <sub>3</sub> -<br>/L) | Anr<br>Mec<br>Amm<br>(mg NH | nual<br>dian<br>onia <sup><u>1</u></sup> | Ann<br>Maxii<br>Amm<br>(mg I<br>N/ | mum<br>onia <sup>1</sup><br>NH₄- | E. c          | <b>rcentile</b><br>coli<br>(100mL) | Clarity       | y (m) <sup>2</sup> |
|                                    |                                         | shor<br>t<br>ter<br>m         | 80<br>yea<br>r        | short<br>term                   | 80<br>yea<br>r        | sho<br>rt<br>ter<br>m             | 80<br>yea<br>r        | short<br>term                      | 80<br>year            | short<br>term                | 80<br>year | short<br>term | 80<br>year                                                        | short<br>term               | 80<br>year                               | short<br>term                      | 80<br>year                       | short<br>term | 80<br>year                         | short<br>term | 80<br>year         |
| <u>73</u>                          | Waikato River<br>Ohaaki Br              | 1.5                           | 1.5                   | 13                              | 13                    | 134                               | 134                   | 10                                 | 10                    | 0.039                        | 0.03<br>9  | 0.06<br>2     | 0.06<br>2                                                         | 0.00<br>2                   | 0.00<br>2                                | 0.01<br>3                          | 0.01<br>3                        | 70            | 70                                 | 3.8           | 3.8                |
| <u>66</u>                          | Waikato River<br>Ohakuri Tailrace<br>Br | 3.2                           | 3.2                   | 11                              | 11                    | 206                               | 160                   | 17                                 | 17                    | 0.084                        | 0.08<br>4  | 0.17<br>2     | 0.17<br>2                                                         | 0.00<br>3                   | 0.00<br>3                                | 0.01<br>7                          | 0.01<br>7                        | 15            | 15                                 | 3.4           | 3.4                |
| <u>67</u>                          | Waikato River<br>Whakamaru<br>Tailrace  |                               | 5                     |                                 | 25                    | 260                               | 160                   | 20                                 | 20                    | 0.101                        | 0.10<br>1  | 0.23<br>0     | 0.23<br>0                                                         | 0.00<br>3                   | 0.00<br>3                                | 0.01<br>0                          | 0.01<br>0                        | 60            | 60                                 | 2.0           | 3.0                |
| <u>64</u>                          | Waikato River<br>Waipapa Tailrace       | 4.1                           | 4.1                   | 25                              | 25                    | 318                               | 160                   | 25                                 | 20                    | 0.164                        | 0.16<br>4  | 0.32<br>0     | 0.32<br>0                                                         | 0.00<br>7                   | 0.00<br>7                                | 0.01<br>7                          | 0.01<br>7                        | 162           | 162                                | 2.0           | 3.0                |
| <u>74</u>                          | Pueto Stm<br>Broadlands Rd Br           | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.450                        | 0.45<br>0  | 0.53<br>0     | 0.53<br>0                                                         | 0.00<br>3                   | 0.00<br>3                                | 0.00<br>9                          | 0.00<br>9                        | 92            | 92                                 | 1.8           | 3.0                |
| <u>72</u>                          | Torepatutahi<br>Stm<br>Vaile Rd Br      | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.500                        | 0.50<br>0  | 0.80<br>0     | 0.80<br>0                                                         | 0.00<br>2                   | 0.00<br>2                                | 0.01<br>1                          | 0.01<br>1                        | 216           | 216                                |               |                    |
| <u>65</u>                          | Waiotapu Stm<br>Homestead Rd<br>Br      | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 1.257                        | 1.0        | 1.56<br>3     | 1.5                                                               | 0.11<br>2                   | 0.03                                     | 0.17<br>6                          | 0.05                             | 281           | 281                                |               |                    |

| <u>69</u> | Mangakara Stm<br>(Reporoa) SH5              | <u>NA<sup>3</sup></u> | 1.270 | 1.0   | 1.590 | 1.5       | 0.008 | 0.008 | 0.062 | 0.05  | 1584 | 540 | 0.9 | 1.0 |
|-----------|---------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------|-------|-------|-----------|-------|-------|-------|-------|------|-----|-----|-----|
| <u>62</u> | Kawaunui Stm<br>SH5 Br                      | <u>NA<sup>3</sup></u> | 2.580 | 2.4   | 2.850 | 1.5       | 0.006 | 0.006 | 0.079 | 0.05  | 2335 | 540 | 1.4 | 1.6 |
| <u>58</u> | Waiotapu Stm<br>Campbell Rd Br              | <u>NA<sup>3</sup></u> | 0.915 | 0.915 | 1.100 | 1.1<br>00 | 0.291 | 0.24  | 0.315 | 0.05  | 18   | 18  | 1.2 | 1.6 |
| <u>59</u> | Otamakokore<br>Stm Hossack Rd               | <u>NA<sup>3</sup></u> | 0.740 | 0.740 | 1.190 | 1.1<br>90 | 0.006 | 0.006 | 0.024 | 0.024 | 680  | 540 | 1.2 | 1.6 |
| <u>56</u> | Whirinaki Stm<br>Corbett Rd                 | <u>NA<sup>3</sup></u> | 0.770 | 0.770 | 0.870 | 0.8<br>70 | 0.002 | 0.002 | 0.012 | 0.012 | 98   | 98  | 2.7 | 3.0 |
| <u>54</u> | Tahunaatara Stm<br>Ohakuri Rd               | <u>NA<sup>3</sup></u> | 0.555 | 0.555 | 0.830 | 0.8<br>30 | 0.003 | 0.003 | 0.015 | 0.015 | 783  | 540 | 1.3 | 1.6 |
| <u>57</u> | Mangaharakeke<br>Stm SH30 (Off Jct<br>SH1)  | <u>NA<sup>3</sup></u> | NA <sup>3</sup>       | 0.525 | 0.525 | 0.750 | 0.7<br>50 | 0.003 | 0.003 | 0.015 | 0.015 | 684  | 540 | 1.1 | 1.6 |
| <u>70</u> | Waipapa Stm<br>(Mokai)<br>Tirohanga Rd Br   | <u>NA<sup>3</sup></u> | 1.189 | 1.0   | 1.500 | 1.5       | 0.003 | 0.003 | 0.005 | 0.005 | 1147 | 540 | 1.2 | 1.6 |
| <u>71</u> | Mangakino Stm<br>Sandel Rd                  | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | NA <sup>3</sup>       | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | 0.650 | 0.650 | 0.860 | 0.8<br>60 | 0.003 | 0.003 | 0.012 | 0.012 | 251  | 251 | 1.8 | 3.0 |
| <u>49</u> | Whakauru Stm<br>SH1 Br                      | <u>NA<sup>3</sup></u> | 0.260 | 0.260 | 0.450 | 0.4<br>50 | 0.003 | 0.003 | 0.033 | 0.033 | 2106 | 540 | 0.8 | 1.0 |
| <u>48</u> | Mangamingi Stm<br>Paraonui Rd Br            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | NA <sup>3</sup>       | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | 2.760 | 2.4   | 3.12  | 1.5       | 0.091 | 0.03  | 0.296 | 0.05  | 2151 | 540 | 0.8 | 1.0 |
| <u>45</u> | Pokaiwhenua<br>Stm Arapuni -<br>Putaruru Rd | <u>NA<sup>3</sup></u> | 1.680 | 1.0   | 2.040 | 1.5       | 0.002 | 0.002 | 0.020 | 0.020 | 1363 | 540 | 1.3 | 1.6 |

| <u>44</u> | Little Waipa Stm | NA <sup>3</sup> | <u>NA<sup>3</sup></u> | NA <sup>3</sup> | NA <sup>3</sup> | <u>NA<sup>3</sup></u> | NA <sup>3</sup> | NA <sup>3</sup> | NA <sup>3</sup> |       |     |       |     |       |       |       |      |      |     |     |     |
|-----------|------------------|-----------------|-----------------------|-----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|-------|-----|-------|-----|-------|-------|-------|------|------|-----|-----|-----|
|           | Arapuni -        |                 |                       |                 |                 |                       |                 |                 |                 | 1.522 | 1.0 | 2.040 | 1.5 | 0.002 | 0.002 | 0.085 | 0.05 | 1377 | 540 | 1.5 | 1.6 |
|           | Putaruru Rd      |                 |                       |                 |                 |                       |                 |                 |                 |       |     |       |     |       |       |       |      |      |     |     |     |

<sup>1</sup> The annual median and annual maximum ammonia have been adjusted for pH

<sup>2</sup>Median black disc horizontal sighting range under baseflow conditions

<sup>3</sup> Attribute is not applicable to the sub-catchment

# Table 3.11-1: Middle Waikato River Freshwater Management Unit

|                                    |                                              |                       |                       |                       |                                |                       |                                 |                       |                                   |               | Attrik                          | outes                |                                                      |                             |            |               |            |                       |                                                                    |               |            |
|------------------------------------|----------------------------------------------|-----------------------|-----------------------|-----------------------|--------------------------------|-----------------------|---------------------------------|-----------------------|-----------------------------------|---------------|---------------------------------|----------------------|------------------------------------------------------|-----------------------------|------------|---------------|------------|-----------------------|--------------------------------------------------------------------|---------------|------------|
| <u>Catchmen</u><br><u>t number</u> | Site                                         | Me<br>Chloro          |                       | Maxi<br>Chloro        | nual<br>mum<br>phyll a<br>/m³) | Media<br>Nitro        | nual<br>n Total<br>ogen<br>/m³) | Media<br>Phosp        | nual<br>n Total<br>bhorus<br>/m³) | Me            | nual<br>dian<br>:e (mg<br>·N/L) | perce<br>Nite<br>(mg | al 95 <sup>th</sup><br>entile<br>rate<br>NO3-<br>/L) | Ann<br>Mea<br>Amm<br>(mg NH | dian       |               |            | perc<br><i>E.</i>     | 5 <sup>th</sup><br>centile<br><i>coli</i><br>( <i>E.</i><br>L00mL) | Clarity       | y (m)²     |
|                                    |                                              | short<br>term         | 80<br>year            | short<br>term         | 80<br>year                     | short<br>term         | 80<br>year                      | short<br>term         | 80<br>year                        | short<br>term | 80<br>year                      | short<br>term        | 80<br>year                                           | short<br>term               | 80<br>year | short<br>term | 80<br>year | sho<br>rt<br>ter<br>m | 80<br>year                                                         | short<br>term | 80<br>year |
| <u>33</u>                          | Waikato River<br>Narrows Boat<br>Ramp        | 5.5                   | 5                     | 23                    | 23                             | 404                   | 350                             | 28                    | 20                                | 0.23<br>5     | 0.23<br>5                       | 0.50<br>0            | 0.50<br>0                                            | 0.00<br>9                   | 0.00<br>9  | 0.01<br>8     | 0.01<br>8  | 340                   | 260                                                                | 1.7           | 1.7        |
| <u>25</u>                          | Waikato River<br>Horotiu Br                  | 6.1                   | 5                     | 23                    | 23                             | 432                   | 350                             | 34                    | 20                                | 0.26<br>0     | 0.26<br>0                       | 0.53<br>0            | 0.53<br>0                                            | 0.00<br>7                   | 0.00<br>7  | 0.02<br>9     | 0.02<br>9  | 774                   | 540                                                                | 1.4           | 1.6        |
| <u>32</u>                          | Karapiro Stm<br>Hickey Rd<br>Bridge          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | 0.52<br>0     | 0.52<br>0                       | 1.68<br>9            | 1.5                                                  | 0.00<br>8                   | 0.00<br>8  | 0.03<br>1     | 0.03<br>1  | 451<br>8              | 540                                                                | 0.9           | 1.0        |
| <u>35</u>                          | Mangawhero<br>Stm<br>Cambridge-<br>Ohaupo Rd | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | 1.99<br>0     | 1.0                             | 2.49<br>0            | 1.5                                                  | 0.04<br>1                   | 0.03       | 0.07<br>2     | 0.05       | 292<br>0              | 540                                                                | 0.3           | 1.0        |
| <u>29</u>                          | Mangaonua<br>Stm Hoeka Rd                    | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | 1.45<br>5     | 1.0                             | 1.87<br>8            | 1.5                                                  | 0.03<br>6                   | 0.03       | 0.05<br>1     | 0.05       | 637<br>2              | 540                                                                | 1.0           | 1.0        |
| <u>31</u>                          | Mangaone Stm<br>Annebrooke Rd<br>Br          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | 2.58<br>0     | 2.4                             | 2.94<br>0            | 1.5                                                  | 0.00<br>9                   | 0.00<br>9  | 0.02          | 0.02       | 205<br>2              | 540                                                                | 0.9           | 1.0        |
| <u>30</u>                          | Mangakotukut<br>uku Stm<br>Peacockes Rd      | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>             | 0.80<br>0     | 0.80<br>0                       | 1.78<br>8            | 1.5                                                  | 0.07<br>7                   | 0.03       | 0.13<br>2     | 0.05       | 113<br>94             | 540                                                                | 0.5           | 1.0        |

|                     |                                            |                               |                       |                                |                       |                                    |                       |                                    |                       |                              | Attr          | ibutes                                |                      |                                  |                                   |                                    |                                  |                                                           |      |         |                    |
|---------------------|--------------------------------------------|-------------------------------|-----------------------|--------------------------------|-----------------------|------------------------------------|-----------------------|------------------------------------|-----------------------|------------------------------|---------------|---------------------------------------|----------------------|----------------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------------------------------------|------|---------|--------------------|
| Catchment<br>number | Site                                       | Ann<br>Mec<br>Chlorc<br>a (mg | dian<br>ophyll        | Ann<br>Maxi<br>Chloro<br>a (mg | mum<br>ophyll         | Ann<br>Mec<br>Tot<br>Nitro<br>(mg/ | lian<br>tal<br>ogen   | Ann<br>Mec<br>Tot<br>Phosp<br>(mg/ | lian<br>tal<br>horus  | Ann<br>Meo<br>Nitrat<br>NO3- | lian<br>e (mg | Annua<br>perce<br>Nitr<br>(mg I<br>N/ | ntile<br>ate<br>NO₃- | Ann<br>Med<br>Amm<br>(mg I<br>N/ | lian<br>onia <sup>1</sup><br>NH₄- | Ann<br>Maxii<br>Amm<br>(mg I<br>N/ | mum<br>onia <sup>1</sup><br>NH₄- | 95 <sup>th</sup> per<br><i>E. c</i><br>( <i>E.coli</i> /2 | oli  | Clarity | / (m) <del>²</del> |
|                     |                                            | short                         | 80                    | short                          | 80                    | short                              | 80                    | short                              | 80                    | short                        | 80            | short                                 | 80                   | short                            | 80                                | short                              | 80                               | short                                                     | 80   | short   | 80                 |
|                     |                                            | term                          | year                  | term                           | year                  | term                               | year                  | term                               | year                  | term                         | year          | term                                  | year                 | term                             | year                              | term                               | year                             | term                                                      | year | term    | year               |
| <u>28</u>           | Waitawhiriwhiri<br>Stm Edgecumbe<br>Street | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.880                        | 0.880         | 1.240                                 | 1.24                 | 0.256                            | 0.24                              | 0.318                              | 0.05                             | 5922                                                      | 540  | 0.4     | 1.0                |
| 23                  | Kirikiriroa Stm<br>Tauhara Dr              | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.815                        | 0.815         | 1.572                                 | 1.5                  | 0.096                            | 0.03                              | 0.183                              | 0.05                             | 2124                                                      | 540  | 0.5     | 1.0                |

<sup>1</sup> The annual median and annual maximum ammonia have been adjusted for pH. <sup>2</sup> Median black disc horizontal sighting range under baseflow conditions

<sup>3</sup> Attribute is not applicable to the sub-catchment

# Table 3.11-1: Lower Waikato River Freshwater Management Unit

|                                    |                                      |                               |                       |                                 |                       |                                    |                       |                                                |                       |                              | Att           | ributes                               |                        |               |            |                                 |                                          |                                                     |                       |                   |                |
|------------------------------------|--------------------------------------|-------------------------------|-----------------------|---------------------------------|-----------------------|------------------------------------|-----------------------|------------------------------------------------|-----------------------|------------------------------|---------------|---------------------------------------|------------------------|---------------|------------|---------------------------------|------------------------------------------|-----------------------------------------------------|-----------------------|-------------------|----------------|
| <u>Catchmen</u><br><u>t number</u> | Site                                 | Ann<br>Mec<br>Chlorc<br>a (mg | dian<br>ophyll        | Ann<br>Maxii<br>Chlorc<br>a (mg | mum<br>ophyll         | Ann<br>Mec<br>Tot<br>Nitro<br>(mg/ | lian<br>tal<br>ogen   | Ann<br>Mec<br>To <sup>n</sup><br>Phosp<br>(mg/ | dian<br>tal<br>horus  | Anr<br>Meo<br>Nitrat<br>NO₃- | lian<br>e (mg | Annua<br>perce<br>Nitr<br>(mg I<br>N/ | entile<br>rate<br>NO₃- | Amm<br>(mg    | dian       | Ann<br>Maxi<br>Amm<br>(mg<br>N/ | mum<br>onia <sup><u>1</u><br/>NH₄-</sup> | 95<br>perce<br><i>E. c</i><br>( <i>E.coli/</i><br>) | entile<br><i>:oli</i> | Clarity           | ⁄ (m)²         |
|                                    |                                      | shor<br>t<br>term             | 80<br>year            | shor<br>t<br>term               | 80<br>year            | shor<br>t<br>term                  | 80<br>year            | shor<br>t<br>term                              | 80<br>year            | short<br>term                | 80<br>year    | short<br>term                         | 80<br>year             | short<br>term | 80<br>year | short<br>term                   | 80<br>year                               | short<br>term                                       | 80<br>year            | shor<br>t<br>term | 80<br>yea<br>r |
| <u>20</u>                          | Waikato River<br>Huntly-Tainui Br    | 5.9                           | 5                     | 19                              | 19                    | 562                                | 350                   | 43                                             | 20                    | 0.36<br>5                    | 0.36<br>5     | 0.90<br>0                             | 0.90<br>0              | 0.00<br>5     | 0.00<br>5  | 0.01<br>5                       | 0.01<br>5                                | 1944                                                | 540                   | 0.9               | 1.0            |
| <u>9</u>                           | Waikato River<br>Mercer Br           | 10.0                          | 5                     | 30                              | 25                    | 631                                | 350                   | 49                                             | 20                    | 0.36<br>5                    | 0.36<br>5     | 0.87<br>0                             | 0.87<br>0              | 0.00<br>3     | 0.00<br>3  | 0.01<br>0                       | 0.01<br>0                                | 1494                                                | 540                   |                   |                |
| 4                                  | Waikato River<br>Tuakau Br           | 11.3                          | 5                     | 37                              | 25                    | 571                                | 350                   | 50                                             | 20                    | 0.32<br>5                    | 0.32<br>5     | 0.88<br>0                             | 0.88<br>0              | 0.00<br>3     | 0.00<br>3  | 0.00<br>8                       | 0.00<br>8                                | 1584                                                | 540                   | 0.7               | 1.0            |
| 22                                 | Komakorau Stm<br>Henry Rd            | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>                          | <u>NA<sup>3</sup></u> | 1.27<br>9                    | 1.0           | 4.40<br>0                             | 3.5                    | 0.25<br>0     | 0.24       | 0.41<br>9                       | 0.40                                     | 3474                                                | 540                   | 0.3               | 1.0            |
| 17                                 | Mangawara<br>Stm Rutherford<br>Rd Br | <u>NA<sup>3</sup></u>         | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>           | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>                          | NA <sup>3</sup>       | 0.76<br>5                    | 0.76<br>5     | 2.76<br>0                             | 1.5                    | 0.10<br>3     | 0.03       | 0.17<br>2                       | 0.05                                     | 4955                                                | 540                   | 0.3               | 1.0            |

|                                    |                                                                                |                                  |                       |                                |                       |                                    |                       |                                    |                       |                         | Att                             | ributes                             |                         |                         |                                               |                         |                                              |                                                |                       |                   |                    |
|------------------------------------|--------------------------------------------------------------------------------|----------------------------------|-----------------------|--------------------------------|-----------------------|------------------------------------|-----------------------|------------------------------------|-----------------------|-------------------------|---------------------------------|-------------------------------------|-------------------------|-------------------------|-----------------------------------------------|-------------------------|----------------------------------------------|------------------------------------------------|-----------------------|-------------------|--------------------|
| <u>Catchmen</u><br><u>t number</u> | Site                                                                           | Annu<br>Medi<br>Chlorop<br>(mg/I | ian<br>hyll a         | Ann<br>Maxi<br>Chloro<br>a (mg | mum<br>ophyll         | Ann<br>Mec<br>Tot<br>Nitro<br>(mg/ | lian<br>tal<br>ogen   | Ann<br>Mec<br>Tot<br>Phosp<br>(mg/ | lian<br>tal<br>horus  | Me                      | nual<br>dian<br>:e (mg<br>·N/L) | Annua<br>perce<br>Nitr<br>(mg<br>N/ | entile<br>ate<br>NO₃-   | Mee<br>Amm              | nual<br>dian<br>oonia <sup>1</sup><br>H4-N/L) | Maxi<br>Amm             | nual<br>mum<br>Ionia <sup>1</sup><br>H₄-N/L) | 95<br>perce<br><i>E. c</i><br>( <i>E.coli/</i> | entile<br><i>coli</i> | Clarity           | / (m) <sup>2</sup> |
|                                    |                                                                                | short<br>term                    | 80<br>yea<br>r        | shor<br>t<br>term              | 80<br>yea<br>r        | shor<br>t<br>term                  | 80<br>yea<br>r        | shor<br>t<br>term                  | 80<br>yea<br>r        | short<br>term           | 80<br>year                      | short<br>term                       | 80<br>year              | short<br>term           | 80<br>year                                    | short<br>term           | 80<br>year                                   | short<br>term                                  | 80<br>year            | shor<br>t<br>term | 80<br>yea<br>r     |
| <u>19</u>                          | Awaroa Stm<br>(Rotowaro)<br>Sansons Br @<br>Rotowaro-<br>Huntly Rd             | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.70<br>0               | 0.70<br>0                       | 1.19<br>0                           | 1.19<br>0               | 0.02<br>1               | 0.02<br>1                                     | 0.08<br>9               | 0.05                                         | 1800                                           | 540                   | 0.8               | 1.0                |
| <u>14</u>                          | Matahuru<br>Stm<br>Waiterimu<br>Road Below<br>Confluence                       | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.71<br>5               | 0.71<br>5                       | 1.68<br>9                           | 1.5                     | 0.01<br>6               | 0.01<br>6                                     | 0.05<br>9               | 0.05                                         | 6147                                           | 540                   | 0.4               | 1.0                |
| <u>16</u>                          | Whangape<br>Stm<br>Rangiriri-<br>Glen Murray<br>Rd                             | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | 0.00<br>4               | 0.00<br>4                       | 0.69<br>0                           | 0.69<br>0               | 0.00<br>6               | 0.00<br>6                                     | 0.13<br>4               | 0.05                                         | 584                                            | 540                   | 0.3               | 1.0                |
| <u>12</u>                          | <u>Waerenga</u><br><u>Stm <del>SH2</del></u><br><u>Maramarua</u><br>Taniwha Rd | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>0.82</u><br><u>0</u> | <u>0.82</u><br><u>0</u>         | <u>1.41</u><br><u>0</u>             | <u>1.41</u><br><u>0</u> | <u>0.00</u><br><u>5</u> | <u>0.00</u><br><u>5</u>                       | <u>0.02</u><br>2        | <u>0.02</u><br><u>2</u>                      | <u>5098</u>                                    | <u>540</u>            | <u>0.9</u>        | <u>1.0</u>         |
| <u>8</u>                           | <u>Whangamari</u><br><u>no River</u><br>Jefferies Rd<br><u>Br</u>              | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | NA <sup>3</sup>       | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>0.62</u><br><u>5</u> | <u>0.62</u><br><u>5</u>         | <u>1.84</u><br><u>2</u>             | <u>1.5</u>              | <u>0.01</u><br><u>2</u> | <u>0.01</u><br>2                              | <u>0.14</u><br><u>7</u> | <u>0.05</u>                                  | <u>4712</u>                                    | <u>540</u>            | <u>0.6</u>        | <u>1.0</u>         |
| 2                                  | <u>Mangatangi</u><br><u>River SH2</u><br><u>Maramarua</u>                      | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>0.11</u><br><u>0</u> | <u>0.11</u><br><u>0</u>         | <u>1.12</u><br><u>0</u>             | <u>1.12</u><br><u>0</u> | <u>0.00</u><br><u>5</u> | <u>0.00</u><br><u>5</u>                       | <u>0.03</u><br><u>8</u> | <u>0.03</u><br><u>8</u>                      | <u>5567</u>                                    | <u>540</u>            | <u>0.5</u>        | <u>1.0</u>         |
| 1                                  | <u>Mangatawhir</u><br><u>i River Lyons</u><br><u>Rd</u>                        | <u>NA<sup>3</sup></u>            | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>          | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>NA<sup>3</sup></u>              | <u>NA<sup>3</sup></u> | <u>0.01</u><br><u>3</u> | <u>0.01</u><br><u>3</u>         | <u>0.37</u><br><u>0</u>             | <u>0.37</u><br><u>0</u> | <u>0.00</u><br><u>3</u> | <u>0.00</u><br><u>3</u>                       | <u>0.01</u><br><u>1</u> | <u>0.01</u><br><u>1</u>                      | <u>5108</u>                                    | <u>540</u>            | <u>1.6</u>        | <u>1.6</u>         |

Doc # 13362402 [Master Clean Word Version]

[Master clean word version – may contain errors]

|           | <u>Buckingham</u><br><u>Br</u>                        |                       |                       |                       |                       |                       |                       |                       |                       |                         |            |                         |            |                         |                         |                         |             |             |            |            |            |
|-----------|-------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|------------|-------------------------|------------|-------------------------|-------------------------|-------------------------|-------------|-------------|------------|------------|------------|
| <u>10</u> | Whangamari<br>no River<br>Island Block<br>Rd          | <u>NA<sup>3</sup></u> | 0.07<br>5               | 0.07<br>5  | 0.70<br>0               | 0.70<br>0  | 0.01<br>1               | 0.01<br>1               | 0.05<br>4               | 0.05        | 655         | 540        | 0.3        | 1.0        |
| 3         | <u>Whakapipi</u><br><u>Stm</u><br><u>SH22 Br</u>      | <u>NA<sup>3</sup></u> | <u>3.39</u><br><u>0</u> | <u>2.4</u> | <u>5.12</u><br><u>0</u> | <u>3.5</u> | <u>0.00</u><br><u>6</u> | <u>0.00</u><br><u>6</u> | <u>0.08</u><br><u>1</u> | <u>0.05</u> | <u>1773</u> | <u>540</u> | <u>1.1</u> | <u>1.1</u> |
| <u>7</u>  | Ohaeroa Stm<br>SH22 Br                                | <u>NA<sup>3</sup></u> | 1.47<br>3               | 1.0        | 1.80<br>6               | 1.5        | 0.00<br>3               | 0.00<br>3               | 0.01<br>5               | 0.01<br>5   | 4667        | 540        | 0.8        | 1.0        |
| <u>11</u> | Opuatia Stm<br>Ponganui Rd                            | <u>NA<sup>3</sup></u> | 0.74<br>0               | 0.74<br>0  | 1.06<br>0               | 1.06<br>0  | 0.00<br>5               | 0.00<br>5               | 0.01<br>6               | 0.01<br>6   | 2898        | 540        | 0.6        | 1.0        |
| <u>5</u>  | Awaroa River<br>(Waiuku)<br>Otaua Rd Br<br>Moseley Rd | <u>NA<sup>3</sup></u> | 1.36<br>9               | 1.0        | 2.31<br>0               | 1.5        | 0.02<br>1               | 0.02<br>1               | 0.13<br>5               | 0.05        | 1017        | 540        | 0.4        | 1.0        |

<sup>1</sup> The annual median and annual maximum ammonia have been adjusted for pH. <sup>2</sup>Median black disc horizontal sighting range under baseflow conditions

<sup>3</sup> Attribute is not applicable to the sub-catchment

#### Table 3.11-1: Waipa River Freshwater Management Unit

|                     |                                                   |               |                           |               |                                              |               | Attrib                                  | outes         |                                          |               |                                   |               |                    |
|---------------------|---------------------------------------------------|---------------|---------------------------|---------------|----------------------------------------------|---------------|-----------------------------------------|---------------|------------------------------------------|---------------|-----------------------------------|---------------|--------------------|
| Catchment<br>number | Site                                              | Nitrate       | Median<br>(mg NO₃-<br>/L) | percenti      | al 95 <sup>th</sup><br>le Nitrate<br>O₃-N/L) | Amm           | Median<br>nonia <sup>1</sup><br>H₄-N/L) | Amm           | Maximum<br>Ionia <sup>1</sup><br>H₄-N/L) | E. (          | rcentile<br><i>coli</i><br>100mL) | Clarity       | y (m) <del>²</del> |
|                     |                                                   | short<br>term | 80 year                   | short<br>term | 80 year                                      | short<br>term | 80 year                                 | short<br>term | 80 year                                  | short<br>term | 80 year                           | short<br>term | 80 year            |
| <u>68</u>           | Waipa River Mangaokewa Rd                         | 0.380         | 0.380                     | 0.600         | 0.600                                        | 0.003         | 0.003                                   | 0.017         | 0.017                                    | 2417          | 540                               | 1.5           | 1.6                |
| <u>60</u>           | Waipa River Otewa                                 | 0.228         | 0.228                     | 0.502         | 0.502                                        | 0.003         | 0.003                                   | 0.008         | 0.008                                    | 2036          | 540                               | 2.1           | 2.1                |
| <u>51</u>           | Waipa River SH3 Otorohanga                        | 0.370         | 0.370                     | 1.050         | 1.050                                        | 0.004         | 0.004                                   | 0.020         | 0.020                                    | 3289          | 540                               | 1.2           | 1.6                |
| <u>43</u>           | Waipa River<br>Pirongia-Ngutunui Rd Br            | 0.565         | 0.565                     | 1.270         | 1.270                                        | 0.008         | 0.008                                   | 0.023         | 0.023                                    | 4441          | 540                               | 0.7           | 1.0                |
| <u>34</u>           | Waipa River Whatawhata<br>Bridge                  | 0.673         | 0.673                     | 1.319         | 1.319                                        | 0.009         | 0.009                                   | 0.026         | 0.026                                    | 3657          | 540                               | 0.6           | 1.0                |
| <u>26</u>           | Ohote Stm<br>Whatawhata/Horotiu Rd                | 0.495         | 0.495                     | 1.370         | 1.370                                        | 0.023         | 0.023                                   | 0.052         | 0.05                                     | 2142          | 540                               | 0.6           | 1.0                |
| <u>36</u>           | Kaniwhaniwha Stm Wright Rd                        | 0.350         | 0.350                     | 0.890         | 0.890                                        | 0.007         | 0.007                                   | 0.022         | 0.022                                    | 1917          | 540                               | 0.9           | 1.0                |
| <u>38</u>           | Mangapiko Bowman Rd Stm                           | 1.369         | 1.0                       | 2.490         | 1.5                                          | 0.022         | 0.022                                   | 0.076         | 0.03                                     | 7074          | 540                               | 0.6           | 1.0                |
| <u>39</u>           | Mangaohoi Stm South Branch<br>Maru Rd             | 0.230         | 0.230                     | 0.390         | 0.390                                        | 0.003         | 0.003                                   | 0.008         | 0.008                                    | 943           | 540                               | 1.6           | 1.6                |
| 37                  | Mangauika Stm<br>Te Awamutu Borough W/S<br>Intake | 0.210         | 0.210                     | 0.280         | 0.280                                        | 0.002         | 0.002                                   | 0.003         | 0.003                                    | 1008          | 540                               | 3.3           | 3.3                |
| 40                  | Puniu River Bartons Corner<br>Rd Br               | 0.650         | 0.650                     | 1.280         | 1.280                                        | 0.007         | 0.007                                   | 0.029         | 0.029                                    | 2790          | 540                               | 0.9           | 1.0                |

| 47 | Mangatutu Stm Walker Rd Br           | 0.380 | 0.380 | 0.880 | 0.880 | 0.003 | 0.003 | 0.012 | 0.012 | 738  | 540 | 1.5 | 1.6 |
|----|--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----|-----|-----|
| 46 | Waitomo Stm SH31<br>Otorohanga       | 0.520 | 0.520 | 0.830 | 0.830 | 0.008 | 0.008 | 0.025 | 0.025 | 1453 | 540 | 0.6 | 1.0 |
| 53 | Mangapu River Otorohanga             | 0.860 | 0.860 | 1.360 | 1.360 | 0.015 | 0.015 | 0.057 | 0.05  | 4284 | 540 | 0.7 | 1.0 |
| 52 | Waitomo Stm Tumutumu Rd              | 0.630 | 0.630 | 0.800 | 0.800 | 0.004 | 0.004 | 0.013 | 0.013 | 2241 | 540 | 1.1 | 1.6 |
| 63 | Mangaokewa Stm Lawrence<br>Street Br | 0.530 | 0.530 | 0.980 | 0.980 | 0.004 | 0.004 | 0.013 | 0.013 | 6224 | 540 | 1.4 | 1.6 |

 $\underline{^1\,\text{The}}$  annual median and annual maximum ammonia have been adjusted for pH.

<sup>2</sup>Median black disc horizontal sighting range under baseflow conditions

<sup>3</sup> Attribute is not applicable to the sub-catchment

|                         | Attributes                                                |                                                            |                                                       |                                                                                |                                            |                                                           |                                                                           |                                                                                   |                          |  |  |
|-------------------------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------|--|--|
| Lake FMU                | Annual<br>Median<br>Chlorophyll<br>a (mg/m <sup>3</sup> ) | Annual<br>Maximum<br>Chlorophyll a<br>(mg/m <sup>3</sup> ) | Annual Median<br>Ammonia <sup>1</sup><br>(mg NH4-N/L) | <u>Annual</u><br><u>Maximum</u><br><u>Ammonia<sup>1</sup><br/>(mg NH₄-N/L)</u> | Annual Median<br>Total Nitrogen<br>(mg/m³) | Annual Median<br>total Phosphorus<br>(mg/m <sup>3</sup> ) | 95 <sup>th</sup> percentile<br><i>E. coli</i><br>( <i>E. coli</i> /100mL) | 80 <sup>th</sup> percentile<br>cyanobacteria<br>(biovolume<br>mm <sup>3</sup> /L) | Clarity (m) <sup>1</sup> |  |  |
|                         | 80 year*                                                  | 80 year*                                                   | <u>80 year*</u>                                       | <u>80 year*</u>                                                                | 80 year*                                   | 80 year*                                                  | 80 year*                                                                  | 80 year*                                                                          | 80 year*                 |  |  |
| Dune                    | 12                                                        | 60                                                         | <u>0.24</u>                                           | <u>0.40</u>                                                                    | 750                                        | 50                                                        | 540                                                                       | 1.8+                                                                              | 1                        |  |  |
| Riverine                | 12                                                        | 60                                                         | 0.24                                                  | <u>0.40</u>                                                                    | 800                                        | 50                                                        | 540                                                                       | 1.8+                                                                              | 1                        |  |  |
| Volcanic<br><u>Zone</u> | 12                                                        | 60                                                         | <u>0.24</u>                                           | <u>0.40</u>                                                                    | 750                                        | 50                                                        | 540                                                                       | 1.8+                                                                              | 1                        |  |  |
| Peat                    | 12                                                        | 60                                                         | <u>0.24</u>                                           | <u>0.40</u>                                                                    | 750                                        | 50                                                        | 540                                                                       | 1.8+                                                                              | 1                        |  |  |

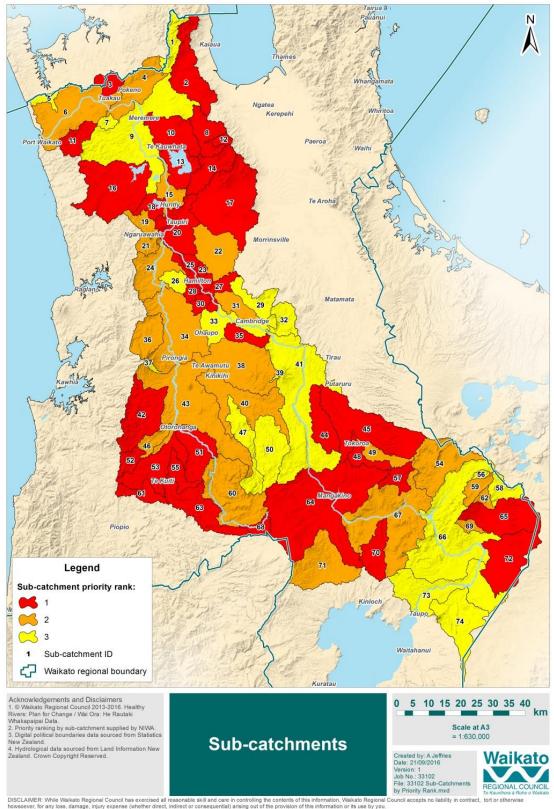
<sup>1</sup> The annual median and annual maximum ammonia have been adjusted for pH. <sup>2</sup> Median black disc horizontal sighting range under baseflow conditions

\*unless a lake is already of better water quality, in which case the water quality is to not decline

+1.8mm<sup>3</sup>/L biovolume equivalent of potentially toxic cyanobacteria or 10mm<sup>3</sup>/L total biovolume of all cyanobacteria

# Table 3.11-2: List of sub-catchments showing Priority 1, Priority 2, and Priority 3 sub-catchments/Te rārangi o ngā riu kōawaawa e whakaatu ana i te riu kōawaawa i te Taumata 1, i te Taumata 2, me te Taumata 3

If more than fifty percent of a farm enterprise is in a particular sub-catchment, then the dates for compliance for that sub-catchment apply.


| Sub-catchment identifier                | Sub-catchment number | Priority |
|-----------------------------------------|----------------------|----------|
| Mangatangi                              | 2                    | <u>1</u> |
| <u>Whakapipi</u>                        | <u>3</u>             | <u>1</u> |
| Whangamarino at Jefferies Rd Br         | <u>8</u>             | <u>1</u> |
| Whangamarino at Island Block Rd         | 10                   | 1        |
| Opuatia                                 | 11                   | 1        |
| <u>Waerenga</u>                         | 12                   | <u>1</u> |
| Waikare                                 | 13                   | 1        |
| Matahuru                                | 14                   | 1        |
| Whangape                                | 16                   | 1        |
| Mangawara                               | 17                   | 1        |
| Awaroa (Rotowaro) at Harris/Te Ohaki Br | 18                   | 1        |
| Waikato at Huntly-Tainui Br             | 20                   | 1        |
| Kirikiriroa                             | 23                   | 1        |
| Waikato at Horotiu Br                   | 25                   | 1        |
| Waikato at Bridge St Br                 | 27                   | 1        |
| Waitawhiriwhiri                         | 28                   | 1        |
| Mangakotukutuku                         | 30                   | 1        |
| Mangawhero                              | 35                   | 1        |
| Moakurarua                              | 42                   | 1        |
| Little Waipa                            | 44                   | 1        |
| Pokaiwhenua                             | 45                   | 1        |
| Mangamingi                              | 48                   | 1        |
| Waipa at Otorohanga                     | 51                   | 1        |
| Waitomo at Tumutumu Rd                  | 52                   | 1        |
| Mangapu                                 | 53                   | 1        |
| Mangarapa                               | 55                   | 1        |
| Mangaharakeke                           | 57                   | 1        |
| Mangarama                               | 61                   | 1        |

| Mangaokewa                       | 63 | 1                     |
|----------------------------------|----|-----------------------|
| Waikato at Waipapa               | 64 | 1                     |
| Waiotapu at Homestead            | 65 | 1                     |
| Waipa at Mangaokewa Rd           | 68 | 1                     |
| Waipapa                          | 70 | 1                     |
| Torepatutahi                     | 72 | 1                     |
| Waikato at Tuakau Br             | 4  | 2                     |
| Waikato at Port Waikato          | 6  | <del>2</del> 1        |
| Waikato at Rangiriri             | 15 | <u>21</u>             |
| Awaroa (Rotowaro) at Sansons Br  | 19 | <u>21</u>             |
| Firewood                         | 21 | 2                     |
| Komakorau                        | 22 | 2                     |
| Waipa at Waingaro Rd Br          | 24 | 2                     |
| Mangaone                         | 31 | 2                     |
| Waipa at SH23 Br Whatawhata      | 34 | <del>2</del> <u>1</u> |
| Kaniwhaniwha                     | 36 | 2                     |
| Mangapiko                        | 38 | 2                     |
| Puniu at Bartons Corner Rd Br    | 40 | 2                     |
| Waipa at Pirongia-Ngutunui Rd Br | 43 | 2                     |
| Waitomo at SH31 Otorohanga       | 46 | 2                     |
| Whakauru                         | 49 | 2                     |
| Tahunaatara                      | 54 | 2                     |
| Otamakokore                      | 59 | 2                     |
| Waipa at Otewa                   | 60 | 2                     |
| Kawaunui                         | 62 | 2                     |
| Waikato at Whakamaru             | 67 | 2                     |
| Mangakara                        | 69 | 2                     |
| Mangakino                        | 71 | 2                     |
| <u>Mangatawhiri</u>              | 1  | <u>3</u>              |
| Awaroa (Waiuku)                  | 5  | 3                     |
| Ohaeroa                          | 7  | 3                     |
| Waikato at Mercer Br             | 9  | 3                     |

| Ohote                | 26 | 3                     |
|----------------------|----|-----------------------|
| Mangaonua            | 29 | 3                     |
| Karapiro             | 32 | 3                     |
| Waikato at Narrows   | 33 | <del>3 <u>1</u></del> |
| Mangauika            | 37 | 3                     |
| Mangaohoi            | 39 | 3                     |
| Waikato at Karapiro  | 41 | 3                     |
| Mangatutu            | 47 | 3                     |
| Puniu at Wharepapa   | 50 | 3                     |
| Whirinaki            | 56 | 3                     |
| Waiotapu at Campbell | 58 | <u>31</u>             |
| Waikato at Ohakuri   | 66 | 3                     |
| Waikato at Ohaaki    | 73 | <u>31</u>             |
| Pueto                | 74 | 3                     |
|                      |    |                       |

Table 3.11-2: List of sub-catchments showing Priority 1, Priority 2, and Priority 3 sub-catchments

\* part sub-catchment



oever, for any loss, damage, injury expense (whether direct, indirect or consequential) ansing out of the provision of this information of its use by you.

#### Map 3.11-2: Map of the Waikato and Waipa River Catchments, showing sub-catchments

#### Updated map showing corrected regional boundaries, priority colours and lake colours to be inserted.